16,已知点为的准线与轴的交点,点为焦点.点为抛物线上两个点.若.则向量与的夹角为 . 查看更多

 

题目列表(包括答案和解析)

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的倾斜角.

查看答案和解析>>

已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|=|AF|,则△AFK的面积为

(A)4                               (B)8

(C)16                              (D)32

查看答案和解析>>

已知抛物线y2=2px的焦点F与双曲线-1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则△AFK的面积为

A.32  B.8  C.16  D.4

查看答案和解析>>

已知抛物线的焦点为,准线与轴的交点为,点上且,则△的面积为(   )

A.4                B.8                C.16               D.32

 

查看答案和解析>>

已知抛物线的焦点为,准线与轴的交点为,点上且,则的面积为(     )

A.4              B.8            C.16            D.32

 

查看答案和解析>>

1.解析:,故选A。

2.解析:∵

故选B。

3.解析:由,得,此时,所以,,故选C。

4.解析:显然,若共线,则共线;若共线,则,即,得,∴共线,∴共线是共线的充要条件,故选C。

5.解析:设公差为,由题意得,,解得,故选C。

6.解析:∵双曲线的右焦点到一条渐近线的距离等于焦距的,∴,又∵,∴,∴,∴双曲线的离心率是。故选B.

7.解析:∵为正实数,∴,∴;由均值不等式得恒成立,,故②不恒成立,又因为函数是增函数,∴,故恒成立的不等式是①③④。故选C.

8.解析:∵,∴在区间上恒成立,即在区间上恒成立,∴,故选D。

9.解析:∵

,此函数的最小值为,故选C。

10.解析:如图,∵正三角形的边长为,∴,∴,又∵,∴,故选D。

11.解析:∵在区间上是增函数且,∴其反函数在区间上是增函数,∴,故选A

12.解析:如图,①当时,圆面被分成2块,涂色方法有20种;②当时,圆面被分成3块,涂色方法有60种;

③当时,圆面被分成4块,涂色方法有120种,所以m的取值范围是,故选A。

13.解析:做出表示的平面区域如图,当直线经过点时,取得最大值5。

学科网(Zxxk.Com)14.解析:∵,∴时,,又时,满足上式,因此,

学科网(Zxxk.Com)15.解析:设正四面体的棱长为,连,取的中点,连,∵的中点,∴,∴或其补角为所成角,∵,∴,∴,又∵,∴,∴所成角的余弦值为

学科网(Zxxk.Com)16.解析:∵,∴,∵点的准线与轴的交点,由向量的加法法则及抛物线的对称性可知,点为抛物线上关于轴对称的两点且做出图形如右图,其中为点到准线的距离,四边形为菱形,∴,∴,∴,∴,∴,∴向量的夹角为

17.(10分)解析:(Ⅰ)由正弦定理得,,…2分

,………4分

(Ⅱ)∵,∴,∴,………………………6分

又∵,∴,∴,………………………8分

。………………………10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科会考不合格的概率均为,∴学生甲不能拿到高中毕业证的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分别为,∴学生甲被评为三好学生的概率为。……………………12分

(理)∵。……………………9分

的分布列如下表:

0

1

2

3

的数学期望。……………………12分

19.(12分)解析:(Ⅰ)时,

    

得,   ………3分

 

 

+

0

0

+

递增

极大值

递减

极小值

递增

      ………………………6分

(Ⅱ)在定义域上是增函数,

恒成立,即 

   ………………………9分

(当且仅当时,

               

 ………………………4分

学科网(Zxxk.Com)              

20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

(Ⅱ)∵平面,∴,∴为二面角的平面角,………………………6分

,∴,又∵平面,∴,∴二面角的正切值的大小为。………………………8分

(Ⅲ)过点,交于点,∵平面,∴在平面内的射影,∴与平面所成的角,………………………10分

学科网(Zxxk.Com),∴,又∵,∴与平面所成的角相等,∴与平面所成角的正切值为。………………………12分

解法2:如图建立空间直角坐标系,(Ⅰ)∵,,∴点的坐标分别是,∴,设,∵平面,∴,∴,取,∴,∴。………………………4分

(Ⅱ)设二面角的大小为,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小为。………………………8分

(Ⅲ)设与平面所成角的大小为,∵平面的法向量是,∴,∴,∴与平面所成角的正切值为。………………………12分

21.(Ⅰ) 解析:如图,设右准线轴的交点为,过点分别向轴及右准线引垂线,∵,∴,又∵,∴,………………………2分

,又∵,∴,又∵,解得,∴,∴双曲线的方程为。………………………4分

(Ⅱ)联立方程组   消得:

由直线与双曲线交于不同的两点得:

  于是 ,且    ………………①………………………6分

,则

……………………9分

,所以,解得      ……………②   

由①和②得    即

的取值范围为。………………………12分

22.(12分)解析:(Ⅰ)∵,∴,∴,∴数列是等差数列,………………………2分

又∵,∴公差为2,

,………………………4分

(Ⅱ)∵,∴

∴数列是公比为2的等比数列,

,∴,………………………6分

(Ⅲ)∵

………………………8分

………………………10分

,∴,又∵,∴………………………12分

 

 


同步练习册答案