题目列表(包括答案和解析)
书面表达(满分25分)
为了创造学校的英语学习氛围,激发同学们学习英语的兴趣,我校将举行英语演讲比赛。请你根据下面内容以学生会名义向全校学生做口头通知,介绍相关情况。
活动:英语演讲比赛
比赛时间:5月22日下午;地点:报告厅
比赛要求:
(1)话题从备选的8个话题中自选
(2)选手每人先进行一段20秒以内的自我介绍,演讲时间不超过3分钟
奖励办法:各年级设一、二、三等奖
报名时间:5月15日前
报名地点:学生会办公室
注意: 1.词数不少于60.
2.通知的开头和结尾已为你写好。
3.选手:contestant
Boys and girls, I have an announcement to make.
_____________________________________________________________________________
That’s all.
Thank you.
第二节 书面表达(满分25分)
假如你是张林,刚进入高三学习,需要购买一本有关英语书面表达的书,请根据下列提示,写信给你在外文书店工作的朋友Jack,请他帮你挑选。
| 要 求 | |
| 书的内容要求 | 1.含写作技巧:如文章结构,过渡词使用; 2.有多种写作题材及其范文; 3.最好有近三年高考的书面表达题。 |
| 其它 | 1.大小同英语课本,厚度不限。 2.最新版本,供2007级高三学生使用 3.把书邮寄到学校。 |
要求:1.词数100个左右。
2.不可逐字翻译,但可适当增加内容,使行文连贯。
3.参考词汇:过渡词transitional words 版本edition
注:信的开头和结尾已为你写好,不计入总词数。
Dear Jack,
How are you getting along these days?
I’m in Senior Grade 3 now, and I’m writing to you ask for a favor.
Thank you very much, my dear friend. I wish I hadn’t put you to so much trouble.
Yours,
Zhang Lin
(本题13分)已知函数![]()
(1)已知一直线
经过原点
且与曲线
相切,求
的直线方程;
(2)若关于
的方程
有两个不等的实根,求实数
的取值范围。
阅读下列应用文及相关信息,并按照要求匹配信息。请在答题卡上将对应题号的相应选项字母涂黑。
下面是一篇有关书籍介绍的应用文,请阅读下列应用文和相关信息,并按照要求匹配信息。
首先请阅读下列应用文:
A
I Am a Pencil
Sam Swope's job was teaching writing to third-graders in New York City. His students were from 21 countries, speaking 11 languages, with different backgrounds. But there were a few things they had in common. Family troubles, for one. Money struggles. And poetry. Every single student, with the help of this creative teacher, came forth with awesome writing. Swope leaves the reader with the inspiring conviction (坚信) that deep within each of us lives a poet.
B
Between a Rock and a Hard Place
Aron Ralston, 28, went hiking in a remote Utah canyon without telling anyone. An unexpected catastrophe struck. With enough supplies only for a day, Ralston knew his situation was full of danger. Sure enough, after five days he was in a fight against death. That was when he carried out a courageous plan - using a pocket knife to cut off his trapped arm. His amazing survival story rests at a place among the classics of the genre (体裁).
C
Our Brother's Keeper
Author Jedwin Smith spent 30 years trying to repress (克制) all memories of his brother, Jeff, who was killed in Vietnam. But in Our Brother's Keeper he tells what happens when the Internet brings him into contact with several of his brother's old Marine friends, including the guy who held Jeff in his arms as he died. First via e-mail, and then in person, Smith gets to know these men.
D
The All Americans
With his graduation from West Point, Henry Romanek sailed toward Omaha Beach on the eve of Dday. It was June 1944, and he was about to face the bloodiest battle of his life. Just yesterday, it seemed, he was a standout soldier on the Army team. Now, he was a leader of youngsters in battle, fighting, quite literally, for his country and the future of the free world. In this book, Lars Anderson retraces Romanek's life and that of three other soldiers.
E
Copies in Seconds
With the push of a button, anyone can make copies of almost anything - unlike the old days, when papers had to be rewritten long-hand, carbon-copied out of fussy mimeograph machines (蜡纸油印机). In Copies in Seconds, David Owen showed how a shy engineer named Chester Carlson perfected his xerography machine (静电复印机) and shopped it around until finally hooking up with the Haloid Corporation. That partnership led to the Xerox copier and changed the face of work forever.
F
State of Grace
Back in the late 1950s and early 1960s, the Lynvets was just a football team in a sandy New York City neighborhood. But to most of its members - the author, Robert Timberg, included - the team was their only experience of a happy family, their only chance to rise above terrible everyday circumstances, their only shot at being heroes. The friendships these men formed sustained (维持) them throughout their lives.
请阅读以下求书者的信息,然后匹配他们所要寻找的书籍:
1. Tom is looking for a book about the hiking stories to help him in his following outdoor activities.
2. Kate wants to find a book about the stories of the soldiers during World War II. .
3. Mark wants to research into the history of technological development.
4. Jack is researching into education in a college. He is especially interested in the teaching methods. He wants to find a book which can tell him something about how to teach students from different backgrounds.
5. John wants to find some materials about the soldiers in Vietnam War to carry on his new research.
求书者 书籍
1. Tom A. I Am a Pencil
2. Kate B. Between a Rock and a Hard Place
3. Mark C. Our Brother's Keeper
4.Jack D. The All Americans
5. John E. Copies in Seconds
F. State of Grace
高中英语教学中教师常常遇到授课的语言问题:应该只用英语,还是英语、汉语兼用?你校学生会就此对全校学生做了调查。很设你叫李刚,请结合下表调查结果用英语给你的英国笔友Peter 写一封电子邮件,并发表你自己的观点。信的开头和结尾已给出,不计入总词数。
![]()
注意:
1.不要逐句翻译,可适当增加细节,使行文连贯;
2.词数100左右。
参考词汇:strengthen 增强
Dear Peter,
Is everything going well? Recently the Students’ Union of our school has done a survey on whether English classes should be taught in English only or in both English and Chinese. Now, I’m writing to tell you about it.
Looking forward to your reply.
Yours,
Li Gang
1.解析:
,故选A。
2.解析:抽取回族学生人数是
,故选B。
3.解析:由
,得
,此时
,所以,
,故选C。
4.解析:∵
∥
,∴
,∴
,故选C。
5.解析:设公差为
,由题意得,
;
,解得
或
,故选C。
6.解析:∵双曲线
的右焦点到一条渐近线的距离等于焦距的
,∴
,又∵
,∴
,∴双曲线的渐近线方程是
,故选D.
7.解析:∵
、
为正实数,∴
,∴
;由均值不等式得
恒成立,
,故②不恒成立,又因为函数
在
是增函数,∴
,故恒成立的不等式是①③④。故选C.
8.解析:∵
,∴
在区间
上恒成立,即
在区间
上恒成立,∴
,故选D。
9.解析:∵卷.files/image084.gif)
卷.files/image346.gif)
,∴此函数的最小正周期是
,故选C。
10.解析:如图,∵正三角形
的边长为
,∴
,∴
,又∵
,∴
,故选D。
11.解析:∵
在区间
上是增函数且
,∴其反函数
在区间上
是增函数,∴卷.files/image121.gif)
卷.files/image125.gif)
,故选A
12.解析:如图,①当
或
时,圆面
被分成2块,涂色方法有20种;②当
或
时,圆面
被分成3块,涂色方法有60种;
③当
时,圆面
被分成4块,涂色方法有120种,所以m的取值范围是
,故选A。
13.解析:将
代入
结果为
,∴
时,
表示直线
右侧区域,反之,若
表示直线
右侧区域,则
,∴是充分不必要条件。
14.解析:∵
,∴
时,
,又
时,
满足上式,因此,
。
15.解析:设正四面体的棱长为
,连
,取
的中点
,连
,∵
为
的中点,∴
∥
,∴
或其补角为
与
所成角,∵
,
,∴
,∴
,又∵
,∴
,∴
与
所成角的余弦值为
。
16.解析:∵
,∴
,∵点
为
的准线与
轴的交点,由向量的加法法则及抛物线的对称性可知,点
为抛物线上关于轴对称的两点且做出图形如右图,其中
为点
到准线的距离,四边形
为菱形,∴
,∴
,∴
,∴
,∴
,∴向量
与
的夹角为
。
17.(10分)解析:(Ⅰ)由正弦定理得,
,
,…2分
∴
,
,………4分
(Ⅱ)∵
,
,∴
,∴
,………………………6分
又∵
,∴
,∴
,………………………8分
∴
。………………………10分
18.解析:(Ⅰ)∵
,∴
;……………………理3文4分
(Ⅱ)∵三科会考不合格的概率均为
,∴学生甲不能拿到高中毕业证的概率
;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分别为
,∴学生甲被评为三好学生的概率为
。……………………12分
19.(12分)解析:(Ⅰ)∵
,∴
,
,
,……………3分
(Ⅱ)∵
,∴卷.files/image484.gif)
,
∴
,卷.files/image490.gif)
卷.files/image486.gif)
又
,∴数列
自第2项起是公比为
的等比数列,………………………6分
∴
,………………………8分
(Ⅲ)∵
,∴
,………………10分
∴
。………………………12分
20.解析:(Ⅰ)∵
∥
,
,∴
,∵
底面
,∴
,∴
平面
,∴
,又∵
平面
,∴
,∴
平面
,∴
。………………………4分
(Ⅱ)∵
平面
,∴
,
,∴
为二面角
的平面角,………………………6分
,
,∴
,又∵
平面
,
,∴
,∴二面角
的正切值的大小为
。………………………8分
(Ⅲ)过点
做
∥
,交
于点
,∵
平面
,∴
为
在平面
内的射影,∴
为
与平面
所成的角,………………………10分
∵
,∴
,又∵
∥
,∴
和
与平面
所成的角相等,∴
与平面
所成角的正切值为
。………………………12分
解法2:如图建立空间直角坐标系,(Ⅰ)∵,
,∴点
的坐标分别是
,
,卷.files/image560.gif)
,∴
,
,设
,∵
平面
,∴
,∴
,取
,∴
,∴
。………………………4分
(Ⅱ)设二面角
的大小为
,∵平面
的法向量是
,平面
的法向量是
,∴
,∴
,∴二面角
的正切值的大小为
。………………………8分
(Ⅲ)设
与平面
所成角的大小为
,∵平面
的法向量是
,
,∴
,∴
,∴
与平面
所成角的正切值为
。………………………12分
21.解析:(Ⅰ)设抛物线方程为
,将
代入方程得卷.files/image600.gif)
所以抛物线方程为
。………………………2分
由题意知椭圆的焦点为
、
。
设椭圆的方程为
,
∵过点
,∴
,解得,
,
,
∴椭圆的方程为
。………………………5分
(Ⅱ)设
的中点为
,
的方程为:
,
以
为直径的圆交
于
两点,
中点为
。
设
,则卷.files/image632.gif)
∵
………………………8分
∴卷.files/image638.gif)
………………………10分
当
时,
,
,
此时,直线
的方程为
。………………………12分
22.(12分)解析:(Ⅰ)∵
是偶函数,∴
,
又∵
∴
,
,………………………2分
由
得,
,
∵
时,
;
时,
;
时,
;∴
时,函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com