数列满足.. (1)求,(2)设..求, (3)求数列的通项公式. 江苏省泰州中学2010届高三数学基础题训练 (18)答案 查看更多

 

题目列表(包括答案和解析)

,数列满足:.

(Ⅰ)求证数列是等比数列(要指出首项与公比);

(Ⅱ)求数列的通项公式.

 

查看答案和解析>>

,数列满足:.
(Ⅰ)求证数列是等比数列(要指出首项与公比);
(Ⅱ)求数列的通项公式.

查看答案和解析>>





⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由

查看答案和解析>>

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式.
(2)设bn=
1
n(12-an)
(n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数m,使得任意的n均有Sn
m
32
总成立?若存在,求出m;若不存在,请说明理由.

查看答案和解析>>

数列{an}的前n项和为Sn(n∈N*),Sn=(m+1)-man对任意的n∈N*都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)记数列{an}的公比为q,设q=f(m).若数列{bn}满足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求证:数列{
1bn
}
是等差数列;
(3)在(2)的条件下,设cn=bn•bn+1,数列{cn}的前n项和为Tn.求证:Tn<1.

查看答案和解析>>


同步练习册答案