题目列表(包括答案和解析)
(本小题满分14分)已知动圆
过定点
,且和定直线
相切.(Ⅰ)求动圆圆心
的轨迹
的方程;(Ⅱ)已知点
,过点
作直线与曲线
交于
两点,若
(![]()
为实数),证明:
.
(本小题满分14分)
设
是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(1)证明:
为等比数列;
(2)设
,求数列
的前
项和.
(本小题满分14分)已知圆
:
及定点
,点
是圆
上的动点,点
在
上,点
在
上,
且满足
=2
,
·
=
.
(1)若
,求点
的轨迹
的方程;
(2)若动圆
和(1)中所求轨迹
相交于不同两点
,是否存在一组正实数
,使得直线
垂直平分线段
,若存在,求出这组正实数;若不存在,说明理由.
(本小题满分14分)已知椭圆
:
的离心率为
,过坐标原点
且斜率为
的直线
与
相交于
、
,
.
⑴求
、
的值;
⑵若动圆
与椭圆
和直线
都没有公共点,试求
的取值范围.
(本小题满分14分)
如图,已知椭圆
,
是椭圆
的顶点,若椭圆
的离心率
,且过点
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)作直线
,使得
,且与椭圆
相交于
两点(异于椭圆
的顶点),设直线
和直线
的倾斜角分别是
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com