题目列表(包括答案和解析)
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
设函数f(x)=(1+x)2-2ln(1+x)
(1)若关于x的不等式f(x)-m≥0在[0,e-1]有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个解,求p的最小值.
(3)证明不等式:ln(x+1)<1+
+
+…+
(n∈N*)
已知函数f(x)=ex-x(e是自然对数的底数)
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若
求实数a的取值范围;
(3)已知
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使数列{an+bn}的前n项和等于Sn
设函数f(x)=(1+x)2-2ln(1+x)
(1)若关于x的不等式f(x)-m≥0在[0,e-1]有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个解,求p的最小值.
(3)证明不等式:ln(n+1)<1+
+
+…+
(n∈N*)
已知函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
≤x≤2}且M∩P≠
求实数a的取值范围;
(3)已知n∈N*,且Sn=
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…+bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com