7.过直线上的一点作曲线的两条切线.当直线关于对称时.它们之间的夹角为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
AT2
AN2
=
PT•PS
NT•NS

B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:
m3
n
+
n3
m
≥m2+n2

查看答案和解析>>

A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:

查看答案和解析>>

精英家教网选做题本题包括A,B,C,D四小题,请选定其中 两题 作答,每小题10分,共计20分,
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
ab
cd
,矩阵A属于特征值λ1=-1的一个特征向量为α1=
1
-1
,属于特征值λ2=4的一个特征向量为α2=
3
2
.求矩阵A.
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2
.点
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:≥m2+n2

查看答案和解析>>

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵的属于特征值b的一个特征向量为,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:

查看答案和解析>>


同步练习册答案