题目列表(包括答案和解析)
(本小题满分12分)如图,在平面直角坐标系中,直线
:
与
轴交于点
,与
轴交于点
,抛物线
过点
、点
,且与
轴的另一交点为
,其中
>0,又点
是抛物线的对称轴
上一动点.
(1)求点
的坐标,并在图1中的
上找一点
,使
到点
与点
的距离之和最小;
(2)若△
周长的最小值为
,求抛物线的解析式及顶点
的坐标;
(3)如图2,在线段
上有一动点
以每秒2个单位的速度从点
向点
移动(
不与端点
、
重合),过点
作
∥
交
轴于点
,设
移动的时间为
秒,试把△
的面积
表示成时间
的函数,当
为何值时,
有最大值,并求出最大值.
![]()
(本小题满分12分)如图,在平面直角坐标系中,直线
:
与
轴交于点
,与
轴交于点
,抛物线
过点
、点
,且与
轴的另一交点为
,其中
>0,又点
是抛物线的对称轴
上一动点.
(1)求点
的坐标,并在图1中的
上找一点
,使
到点
与点
的距离之和最小;
(2)若△
周长的最小值为
,求抛物线的解析式及顶点
的坐标;
(3)如图2,在线段
上有一动点
以每秒2个单位的速度从点
向点
移动(
不与端点
、
重合),过点
作
∥
交
轴于点
,设
移动的时间为
秒,试把△
的面积
表示成时间
的函数,当
为何值时,
有最大值,并求出最大值.
![]()
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.![]()
【小题1】求证:△DMN是等边三角形;
【小题2】连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com