20. 已知椭圆的上顶点为,过的焦点且垂直长轴的弦长轴的弦长为. (1)求椭圆的方程; (2)设圆:,过该圆上任意一点作圆的切线,试证明和椭圆恒有两个交点,且有, 的条件下求弦长度的取值范围. 查看更多

 

题目列表(包括答案和解析)

 (本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.

(I) 求椭圆的方程;

(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.

 

查看答案和解析>>

(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.

查看答案和解析>>

(本小题满分14分)

已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。

(Ⅰ)求这三条曲线方程;

(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。

查看答案和解析>>

(本题满分14分)

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值。

 

查看答案和解析>>

(本题满分14分)

已知椭圆过点,且离心率为.

(1)求椭圆的方程;

(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线两点.  

证明:以线段为直径的圆恒过轴上的定点.

 

查看答案和解析>>


同步练习册答案