题目列表(包括答案和解析)
(本小题满分12分)(注意:在试题卷上作答无效)为赢得2010年上海世博会的制高点,某公司最近进行了世博特许产品的市场分析,调查显示,该产品每件成本9元,售价为30元,每天能卖出432件,该公司可以根据情况可变化价格
(
)元出售产品;若降低价格,则销售量增加,且每天多卖出的产品件数与商品单价的降低值
的平方成正比,已知商品单价降低2元时,每天多卖出24件;若提高价格,则销售减少,减少的件数与提高价格
成正比,每提价1元则每天少卖8件,且仅在提价销售时每件产品被世博管委会加收1元的管理费。
(Ⅰ)试将每天的销售利润
表示为价格变化值
的函数;
(Ⅱ)试问如何定价才能使产品销售利润最大?
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
对于定义域为
的函数
,若有常数M,使得对任意的
,存在唯一的
满足等式
,则称M为函数
f (x)的“均值”.
(1)判断0是否为函数
≤
≤
的“均值”,请说明理由;
(2)若函数![]()
为常数)存在“均值”,求实数a的取值范围;
(3)已知函数
是单调函数,且其值域为区间I.试探究函数
的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分.
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
对于定义域为
的函数
,若有常数M,使得对任意的
,存在唯一的
满足等式
,则称M为函数
f (x)的“均值”.
(1)判断0是否为函数
≤
≤
的“均值”,请说明理由;
(2)若函数![]()
为常数)存在“均值”,求实数a的取值范围;
(3)已知函数
是单调函数,且其值域为区间I.试探究函数
的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分.
(本题满分14分,第(1)小题6分,第(2)小题8分)
(1)已知
,且
,比较
与
的大小;
(2)试确定一个区间
,
,对任意的
、
,当
时,恒有
;并说明理由。
说明:对于第(2)题,将根据写出区间
所体现的思维层次和对问题探究的完整性,给予不同的评分.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com