题目列表(包括答案和解析)
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
![]()
【解析】(Ⅰ)因为![]()
又
是平面PAC内的两条相较直线,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直线PD和平面PAC所成的角,从而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因为四边形ABCD为等腰梯形,
,所以
均为等腰直角三角形,从而梯形ABCD的高为
于是梯形ABCD面积
在等腰三角形AOD中,![]()
所以![]()
故四棱锥
的体积为
.
![]()
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD
平面PAC即可,第二问由(Ⅰ)知,BD
平面PAC,所以
是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由
算得体积
如图,在直三棱柱
中,底面
为等腰直角三角形,
,
为棱
上一点,且平面
平面
.
(Ⅰ)求证:
点为棱
的中点;
(Ⅱ)判断四棱锥
和
的体积是否相等,并证明。
![]()
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知
,
面
。由此知:
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点
作
于
点,取
的中点
,连
。
面
面
且相交于
,面
内的直线
,
面
。……3分
又
面
面
且相交于
,且
为等腰三角形,易知
,
面
。由此知:
,从而有
共面,又易知
面
,故有
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
…6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com