所以.直线与平面所成的角为.解法二: 查看更多

 

题目列表(包括答案和解析)

如图,四棱柱中,平面,底面是边长为的正方形,侧棱

 (1)求三棱锥的体积;

 (2)求直线与平面所成角的正弦值;

 (3)若棱上存在一点,使得,当二面角的大小为时,求实数的值.

【解析】(1)在中,

.                 (3’)

(2)以点D为坐标原点,建立如图所示的空间直角坐标系,则

       (4’)

,设平面的法向量为

,                                             (5’)

.  (7’)

(3)

设平面的法向量为,由,      (10’)

 

查看答案和解析>>

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.

查看答案和解析>>

如图,l1,l2是两条互相垂直的异面直线,点P,C在直线l1上,点A, B在直线l2上,M,N分别是线段AB,AP的中点,且PC=AC=a,PA=a,
(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°)。现给出下列四个条件:①CM=AB;②AB=a;③CM⊥AB;④BC⊥AC。请你从中再选择两个条件以确定cosθ的值,并求解.

查看答案和解析>>

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.

查看答案和解析>>

(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)

甲题 :

(1)若关于的不等式的解集不是空集,求实数的取值范围;

(2)已知实数,满足,求最小值.

乙题:

已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数)。

(1)将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;

(2) 若过定点的直线与曲线C相交于AB两点,且,试求实数的值。

 

查看答案和解析>>


同步练习册答案