题目列表(包括答案和解析)
课外研究题:将一块圆心角为
,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.
教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。
参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径
上,或让矩形一边与弦
平行。从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,
就可以得出问题的结论.
(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,
是棱
的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:
;
(2) 求证:
;
(3)求直线
与直线
所成角的余弦值.![]()
(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,
是棱
的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:
;
(2) 求证:
;
(3)求直线
与直线
所成角的余弦值.
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:
平面
;
(II)求证:
;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
![]()
【解析】第一问利用线面平行的判定定理,
,得到![]()
第二问中,利用![]()
,所以![]()
又因为
,
,从而得![]()
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明:![]()
分别是
的中点, ![]()
,
. …4分
(Ⅱ)证明:
四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com