题目列表(包括答案和解析)
给出命题:若
是正常数,且
,
,则
(当且仅当
时等号成立). 根据上面命题,可以得到函数
(
)的最小值及取最小值时的x值分别为( )
A.11+6
,
B.11+6
,
C.5,
D.25,![]()
我们将具有下列性质的所有函数组成集合M:函数
,对任意
均满足
,当且仅当
时等号成立。
(1)若定义在(0,+∞)上的函数
∈M,试比较
与
大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
已知函数
,
(1)求函数
的定义域;
(2)求函数
在区间
上的最小值;
(3)已知
,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由
即![]()
![]()
第二问中,
,
得:
![]()
,
![]()
第三问中,由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,![]()
当命题p为假,命题q为真时,
,
所以![]()
. 给出命题:若
是正常数,且
,
,则
(当且仅当
时等号成立). 根据上面命题,可以得到函数
(
)的k*s#5^u最小值及取最小值时的k*s#5^ux值分
别为( )
A.11+6![]()
,
B.11+6
,
C.5,
D.25,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com