x1+x2=a.从而|x1-x2|==.∵-1≤a≤1.∴|x1-x2|=≤3∴ 要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1.1]恒成立.当且仅当m2+tm+1≥3对任意t∈[-1.1]恒成立.即m2+tm-2≥0对任意t∈[-1.1] 恒成立.x1x2=-2.. ②设g(t)=m2+tm-2=mt+(m2-2).方法一: 查看更多

 

题目列表(包括答案和解析)

(2012•漳州模拟)在平面直角坐标系中,圆x2+y2=R2(R>0)上两点A(x1,y1),B(x2,y2),若劣弧AB的长为L,则
L
R
等于
OA 
, 
OB
夹角的弧度数,从而cos
L
R
=
x1x2+y1y2
R2
.在空间直角坐标系中,以原点为球心,半径为R的球面上两点A(x1,y1,z1),B(x2,y2,z2),若A、B两点间的球面距离为L,则cos
L
R
等于
x1x2+y1y2+z1z2
R2
x1x2+y1y2+z1z2
R2

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

在平面直角坐标系中,圆x2+y2=R2(R>0)上两点A(x1,y1),B(x2,y2),若劣弧AB的长为L,则夹角的弧度数,从而.在空间直角坐标系中,以原点为球心,半径为R的球面上两点A(x1,y1,z1),B(x2,y2,z2),若A、B两点间的球面距离为L,则等于   

查看答案和解析>>

在平面直角坐标系中,圆x2+y2=R2(R>0)上两点A(x1,y1),B(x2,y2),若劣弧AB的长为L,则
L
R
等于
OA 
, 
OB
夹角的弧度数,从而cos
L
R
=
x1x2+y1y2
R2
.在空间直角坐标系中,以原点为球心,半径为R的球面上两点A(x1,y1,z1),B(x2,y2,z2),若A、B两点间的球面距离为L,则cos
L
R
等于______.

查看答案和解析>>

在平面直角坐标系中,圆x2+y2=R2(R>0)上两点A(x1,y1),B(x2,y2),若劣弧AB的长为L,则数学公式夹角的弧度数,从而数学公式.在空间直角坐标系中,以原点为球心,半径为R的球面上两点A(x1,y1,z1),B(x2,y2,z2),若A、B两点间的球面距离为L,则数学公式等于________.

查看答案和解析>>


同步练习册答案