[答案][命题意图]本题主要考查圆周角定理.直角三角形的边角关系以及考查学生添加辅助线的能力.[解析]连结BC.BD.则∠ACB=∠ADB=90° 查看更多

 

题目列表(包括答案和解析)

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

【解析】(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四边形,

∴CF=BD=AD,   连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

由平面与平面垂直的判定定理知如果m为平面α内的

一条直线,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,则高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,反过来则不一定.所以“高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。”是“高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。”的必要不充分条件. w.w.w.k.s.5.u.c.o.m    

答案:B.

【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.

查看答案和解析>>

已知函数=.

(Ⅰ)当时,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范围.

【命题意图】本题主要考查含绝对值不等式的解法,是简单题.

【解析】(Ⅰ)当时,=

≤2时,由≥3得,解得≤1;

当2<<3时,≥3,无解;

≥3时,由≥3得≥3,解得≥8,

≥3的解集为{|≤1或≥8};

(Ⅱ)

∈[1,2]时,==2,

,有条件得,即

故满足条件的的取值范围为[-3,0]

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>

已知分别为三个内角,,的对边,.

(Ⅰ)求

(Ⅱ)若=2,的面积为,求.

【命题意图】本题主要考查正余弦定理应用,是简单题.

【解析】(Ⅰ)由及正弦定理得

   

由于,所以

,故.

(Ⅱ) 的面积==,故=4,

 故=8,解得=2

 

查看答案和解析>>


同步练习册答案