解:命题p等价于即------3分 查看更多

 

题目列表(包括答案和解析)

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

设命题p:(4x-3)2≤1;命题 q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是(  )

查看答案和解析>>

(2012•绍兴一模)已知命题p:log2(|x|-3)<0,q:6x2-5x+1>0,则p是q的(  )条件.

查看答案和解析>>

命题p:|x-1|≤3,命题q:x≥-2或x≤-4,p是q
充分不必要条件
充分不必要条件
(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).

查看答案和解析>>

已知函数f(x)=m(x-m)(x-m-1),g(x)=2-x-1,若命题p:?x∈(3,+∞),f(x)g(x)≤0为假命题,则实数m的取值范围为
 

查看答案和解析>>


同步练习册答案