命题q等价于即 ------6分 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

在极坐标系中,圆和直线相交于两点,求线段的长

【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆 即 化为直角坐标方程即

然后利用直线 ,得到圆心到直线的距离,从而利用勾股定理求解弦长AB。

解:分别将圆和直线的极坐标方程化为直角坐标方程:

 即 即

,  ∴  圆心    ---------3分

直线 ,   ------6分

则圆心到直线的距离,----------8分

      即所求弦长为

 

查看答案和解析>>

已知m∈R,命题p:方程
x
2
 
m-2
+
y
2
 
6-m
=1表示椭圆,命题q:
m
2
 
-5m+6<0
,则命题p是命题q成立的(  )条件.

查看答案和解析>>

命题p:|x|<1,命题q:x2+x-6<0,则?p是?q成立的(  )

查看答案和解析>>

5、已知命题p:|x-a|<4,命题q:x2-5x+6<0,若命题p是命题q的必要条件,则实数a的取值范围是
[-1,6]

查看答案和解析>>


同步练习册答案