(2)令.问数列 是否有最大的项.若存在则求出最大项的值,若不存在则说明理由. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

已知f(x)是定义在实数集R上的不恒为0的函数,对任意实数x,y有f(x)f(y)=f(x+y),当x>0时,有0<f(x)<1.
(Ⅰ)求f(0)的值,并证明f(x)恒正;
(Ⅱ)判断f(x)在实数集R上单调性;
(Ⅲ)设Sn为数列{an}的前n项和,a1=
13
,an=f(n)(n为正整数).令bn=f(Sn),问数列{bn}中是否存在最大项?若存在,求出最大项的值;若不存在,试说明理由.

查看答案和解析>>

已知f(x)是定义在实数集R上的不恒为0的函数,对任意实数x,y有f(x)f(y)=f(x+y),当x>0时,有0<f(x)<1.
(Ⅰ)求f(0)的值,并证明f(x)恒正;
(Ⅱ)判断f(x)在实数集R上单调性;
(Ⅲ)设Sn为数列{an}的前n项和,a1=
1
3
,an=f(n)(n为正整数).令bn=f(Sn),问数列{bn}中是否存在最大项?若存在,求出最大项的值;若不存在,试说明理由.

查看答案和解析>>

已知f(x)是定义在实数集R上的不恒为0的函数,对任意实数x,y有f(x)f(y)=f(x+y),当x>0时,有0<f(x)<1.
(Ⅰ)求f(0)的值,并证明f(x)恒正;
(Ⅱ)判断f(x)在实数集R上单调性;
(Ⅲ)设Sn为数列{an}的前n项和,a1=数学公式,an=f(n)(n为正整数).令bn=f(Sn),问数列{bn}中是否存在最大项?若存在,求出最大项的值;若不存在,试说明理由.

查看答案和解析>>

一、选择题:(本题每小题5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空题:(本题每小题4分,共16分)

11.      12.     13.    14.

三、解答题(本大题6小题,共84分。解答应写出文字说明,证明过程或演算步骤)

15.(本小题满分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小题满分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,则

…………………10分

…14分

 

 

17.(本小题满分14分)

解:                            (…………………3分)

=(…………………7分)

(1)若,即时,==,(…………10分)

(2)若,即时,

所以当时,=(…………………13分)

(…………………14分)

18.(本小题满分14分)

解:(1)令,即

 由

  ∵,∴,即数列是以为首项、为公差的等差数列, ∴  …………8分

(2)化简得,即

 ∵,又∵时,…………12分

 ∴各项中最大项的值为…………14分

19.(本小题满分14分)

解:(1),由题意―――①

       又―――②

       联立得                       …………5分

(2)依题意得   即 ,对恒成立,设,则

      解

      当   ……10分

      则

      又,所以;故只须   …………12分

      解得

      即的取值范围是       …………14分

20.(本小题满分14分)

解:(1)由

    即函数的图象交于不同的两点A,B;                                               ……4分(2)

已知函数的对称轴为

在[2,3]上为增函数,                          ……………6分

                      ……8分

(3)设方程

                                 ……10分

                                ……12分

的对称轴为上是减函数,      ……14分

 


同步练习册答案