(2)若对都有恒成立.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知不等式

(1)若对所有的实数不等式恒成立,求的取值范围;

(2)设不等式对于满足的一切的值都成立,求的取值范围。

 

查看答案和解析>>

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

,其导函数的图像经过点,且在时取得极小值

(1)求的解析式;

(2)若对都有恒成立,求实数的取值范围。

查看答案和解析>>

一、选择题:(本题每小题5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空题:(本题每小题4分,共16分)

11.      12.     13.    14.

三、解答题(本大题6小题,共84分。解答应写出文字说明,证明过程或演算步骤)

15.(本小题满分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小题满分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,则

…………………10分

…14分

 

 

17.(本小题满分14分)

解:                            (…………………3分)

=(…………………7分)

(1)若,即时,==,(…………10分)

(2)若,即时,

所以当时,=(…………………13分)

(…………………14分)

18.(本小题满分14分)

解:(1)令,即

 由

  ∵,∴,即数列是以为首项、为公差的等差数列, ∴  …………8分

(2)化简得,即

 ∵,又∵时,…………12分

 ∴各项中最大项的值为…………14分

19.(本小题满分14分)

解:(1),由题意―――①

       又―――②

       联立得                       …………5分

(2)依题意得   即 ,对恒成立,设,则

      解

      当   ……10分

      则

      又,所以;故只须   …………12分

      解得

      即的取值范围是       …………14分

20.(本小题满分14分)

解:(1)由

    即函数的图象交于不同的两点A,B;                                               ……4分(2)

已知函数的对称轴为

在[2,3]上为增函数,                          ……………6分

                      ……8分

(3)设方程

                                 ……10分

                                ……12分

的对称轴为上是减函数,      ……14分

 


同步练习册答案