(1)记.求证数列等差数列.并求出其首项和公差, 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和记为Sn,前kn项和记为Skn(n,k∈N*),对给定的常数k,若
S(k+1)n
Skn
是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”.
(1)已知Sn=
4
3
an-
2
3
(n∈N*)
,求数列{an}的通项公式;
(2)在(1)的条件下,数列an=2cn,求证数列cn是一个“1 类和科比数列”(4分);
(3)设等差数列{bn}是一个“k类和科比数列”,其中首项b1,公差D,探究b1与D的数量关系,并写出相应的常数t=f(k).

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为Skn(n,k∈N*),对给定的常数k,若是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”.
(1)已知,求数列{an}的通项公式;
(2)在(1)的条件下,数列,求证数列cn是一个“1 类和科比数列”(4分);
(3)设等差数列{bn}是一个“k类和科比数列”,其中首项b1,公差D,探究b1与D的数量关系,并写出相应的常数t=f(k).

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为

Skn(n,k∈N*),对给定的常数k,若是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”,

(1)已知Snan(n∈N*),求数列{an}的通项公式;

(2)在(1)的条件下,数列an=2cn,求证数列{cn}是一个“1类和科比数列”;

(3)、设等差数列{bn}是一个“k类和科比数列”,其中首项b1,公差D,探究b1

与D的数量关系,并写出相应的常数t=f(k);

查看答案和解析>>

已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和为Tn,且Tn+
12
bn=1

(Ⅰ)求数列{an}的通项公式及其前n项和Mn
(Ⅱ)求证数列{bn}是等比数列,并求出其通项公式与前n项和Tn公式;
(III)记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和为Tn,且数学公式
(Ⅰ)求数列{an}的通项公式及其前n项和Mn
(Ⅱ)求证数列{bn}是等比数列,并求出其通项公式与前n项和Tn公式;
(III)记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

一、选择题:本大题共10个小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空题:本大题共4个小题,每小题4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答题:本大题共6个小题,每小题14分,共84分.

15.(4分)     

由题意得  

16. 有分布列:

0

1

2

3

P

从而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB1C1C上的射影。

     因为BB1C1C是正方形,

   

18.(1) 由题意得  

(2)

所以直线的斜率为

,则直线的斜率                                       

19.(1)由韦达定理得

是首项为4,公差为2的等差数列。

(2)由(1)知,则

原式左边=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x则

故(1)得证。

 (2)在R上任取x1,x2,且

 

所以在R上单调递增;

 (3)

;因为

所以无解,即圆心到直线的距离大于或等于半径2,只需

 

 


同步练习册答案