解:设矩形栏目的高为.宽为.则. 查看更多

 

题目列表(包括答案和解析)

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

用长为16米的篱笆借助一墙角围成一个矩形ABCD(如图所示),在P处有一棵树距两墙的距离分别为a(0<a<12)米和4米,现需要将此树圈进去,设矩形ABCD的面积为y(平方米),长BC为x(米).
(1)设y=f(x),求y=f(x)的解析式并指出其定义域;
(2)试求y=f(x)的最大值与最小值之差g(a).

查看答案和解析>>

精英家教网为了美化校园环境,学校打算在兰蕙广场上建造一个绚丽多彩的矩形花园,中间有三个完全一样的矩形花坛,每个花坛面积均为294平方米,花坛四周的过道均为2米,如图所示,设矩形花坛的长为x,宽为y,整个矩形花园面积为S.
(1)试用x,y表示S;
(2)为了节约用地,当矩形花坛的长为多少米时,新建矩形花园占地最少,
占地多少平米?

查看答案和解析>>

精英家教网如图,过点P(0,a3)(0<a<2)的两直线与抛物线y=-ax2相切于A,B两点,且AD和BC均垂直于直线y=-8,垂足分别为D,C,得矩形ABCD.
(1)求A,B两切点的坐标(用a表示);
(2)设矩形ABCD的面积为S(a),求S(a)的最大值.

查看答案和解析>>

精英家教网如图,在半径为
3
、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点(N,M)在OB上,设矩形PNMQ的面积为y,
(1)按下列要求写出函数的关系式:
 ①设PN=x,将y表示成x的函数关系式;
 ②设∠POB=θ,将y表示成θ的函数关系式;
(2)请你选用(1)中的一个函数关系式,求出y的最大值.

查看答案和解析>>


同步练习册答案