函数的概念: (1)映射:设非空数集A.B.若对集合A中任一元素a.在集合B中有唯一元素b与之对应.则称从A到B的对应为映射.记为f:A→B.f表示对应法则.b=f(a). (2)函数定义:函数就是定义在非空数集A.B上的映射.此时称数集A为定义域.象集C={f(x)|x∈A}为值域.定义域.对应法则.值域构成了函数的三要素.从逻辑上讲.定义域.对应法则决定了值域.是两个最基本的因素.逆过来.值域也会限制定义域. 在中学数学的各个部分都存在着求取值范围这一典型问题.它的一种典型处理方法就是建立函数解析式.借助于求函数值域的方法. 查看更多

 

题目列表(包括答案和解析)

函数概念的发展历程

  17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.

  “function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.

  莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.

  当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.

  随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.

  综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.

你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?

1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?

2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?

查看答案和解析>>

在函数概念的发展过程中,德国数学家狄利克雷(Dirichlet,1805--1859)功不可没.19世纪,狄利克雷定义了一个“奇怪的函数”:y=f(x)=
1,x为有理数
0,x为无理数.
,这个函数后来被称为狄利克雷函数.下面对此函数性质的描述中不正确的是(  )

查看答案和解析>>

有人从“若a<b,则2a<
b2-a2
b-a
<2b”中找到灵感引入一个新概念,设F(x)=x2,f(x)=2x,于是有f(a)<
F(b)-F(a)
b-a
<f(b),此时称F(x)为甲函数,f(x)为乙函数,下面命题正确的是(  )

查看答案和解析>>

下列说法中正确的是

[  ]
A.

对相关关系,至少有这样两种情况:变量X是变量Y的原因(或结果);或X与Y都是其他变量的结果

B.

有相关一定有因果,两个存在相关关系的事物,一定存在因果关系

C.

相关关系与数学中函数与自变量的关系没有区别

D.

相关的概念是指两种变量之间的关系或联系程度,它表达的是一种精确、稳定的变化关系

查看答案和解析>>


同步练习册答案