2.1椭圆的标准方程 ★[学习目标]1准确理解椭圆的定义,掌握椭圆的标准方程及其推导. 2通过学生亲自动手尝试画图.发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察.辨析.归纳问题的能力 ★[学习内容] 查看更多

 

题目列表(包括答案和解析)

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈[
1
2
2
2
]
时,求椭圆的长轴长的最大值.

查看答案和解析>>

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离心率e=
2
2
时,求椭圆长轴的长.

查看答案和解析>>

精英家教网如图,点A为圆形纸片内不同于圆心C的定点,动点M在圆周上,将纸片折起,使点M与点A重合,设折痕m交线段CM于点N.现将圆形纸片放在平面直角坐标系xoy中,设圆C:(x+1)2+y2=4a2(a>1),A(1,0),记点N的轨迹为曲线E.
(1)证明曲线E是椭圆,并写出当a=2时该椭圆的标准方程;
(2)设直线l过点C和椭圆E的上顶点B,点A关于直线l的对称点为点Q,若椭圆E的离心率e∈[
1
2
3
2
]
,求点Q的纵坐标的取值范围.

查看答案和解析>>

精英家教网已知在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
中,F1(-c,0)(c>0)是椭圆的左焦点,A(a,0),B(0,b)分别是椭圆的右顶点和上顶点,点O是椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的投影.
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于3+
2
,求椭圆的标准方程.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

现有变换公式可把平面直角坐标系上的一点变换到这一平面上的一点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程,并求出其两个焦点经变换公式变换后得到的点的坐标;

(2) 若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点. 求(1)中的椭圆在变换下的所有不动点的坐标;

(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.

查看答案和解析>>


同步练习册答案