题目列表(包括答案和解析)
(04年北京卷文)(14分)
函数f(x)定义在[0,1]上,满足
且f(1)=1,在每个区间
=1,2,…)上, y=f(x) 的图象都是平行于x轴的直线的一部分.
(Ⅰ)求f(0)及
的值,并归纳出
)的表达式;
(Ⅱ)设直线
轴及y=f(x)的图象围成的矩形的面积为
, 求a1,a2及
的值.
(本小题满分14分)函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a);
(2)若g(a)=
,求a及此时f(x)的最大值.
(本小题14分)
函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,
并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
(本小题满分14分)
f(x)是定义在R上的奇函数,且
,当
时,![]()
(1)求函数
的周期 (2)求函数
在
的表达式
(3)求![]()
(01全国卷理)(14分)
设f (x) 是定义在R上的偶函数,其图像关于直线x = 1对称.对任意x1,x2∈[0,
]都有f (x1+x2) = f (x1) ? f (x2).且f (1) = a>0.
(Ⅰ)求f (
) 及f (
);
(Ⅱ)证明f (x) 是周期函数;
(Ⅲ)记an = f (2n+
),求
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com