题目列表(包括答案和解析)
已知△
的内角
所对的边分别为
且
.
(1)
若
, 求
的值;
(2)
若△
的面积
求
的值.
【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中
,得到正弦值
,再结合正弦定理可知,
,得到
(2)中
即
所以c=5,再利用余弦定理
,得到b的值。
解: (1)∵
, 且
, ∴
. 由正弦定理得
, ∴
.
(2)∵
∴
. ∴c=5
由余弦定理得
,
∴ ![]()
在
中,内角A,B,C所对的分别是a,b,c。已知a=2,c=
,cosA=
.
(I)求sinC和b的值;
(II)求
的值。
【考点定位】本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角和余弦公式以及正弦定理、余弦定理等基础知识,考查基本运算求解能力.
△ABC中,内角A、B、C成等差数列,其对边a、b、c满足
,求A。
【解析】本试题主要考查了解三角形的运用,
因为
![]()
【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题。试题整体上比较稳定,思路也比较容易想,先将利用等差数列得到角B,然后利用余弦定理求解运算得到A。
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com