某商场店庆期间举办为期三天的“真情回报社会.购物就送大礼 的幸运抽奖活动.共设五个奖金等级.最高奖金1万元.平均奖金180元.下面是商场公布的第一天活动情况统计表:资金等级一等奖二等奖三等奖四等奖五等奖资金额(元)10000500010005010中奖人数3889300600一名顾客抽到一张奖券.奖金数为10元.她调查了周围不少正在兑奖的其他顾客.很少有超过50元的.她气愤地去找商场的领导理论.领导解释说这不存在什么欺骗.公布的统计表就是事实.(1)若不超过50元为小奖.不低于1000元为大奖.请计算参加活动的顾客抽一张奖券获得小奖的概率,(2)你认为商场所说的“平均奖金180元 是否欺骗了顾客?请通过计算说明理由,(3)从第一天的活动情况分析:中奖金额的众数是 元,中位数是 元.“平均奖金180元 的说法能否反映中奖的一般金额?为什么? 查看更多

 

题目列表(包括答案和解析)

某商场店庆期间举办为期三天的“真情回报社会,购物(满188元)就送大礼”的幸运抽奖活动,共设五个奖金等级,最高奖金1万元,平均奖金180元.下面是商场公布的第一天活动情况统计表:
资金等级 一等奖 二等奖 三等奖 四等奖 五等奖
资金额(元) 10000 5000 1000 50 10
中奖人数 3 8 89 300 600
一名顾客抽到一张奖券,奖金数为10元,她调查了周围不少正在兑奖的其他顾客,很少有超过50元的,她气愤地去找商场的领导理论,领导解释说这不存在什么欺骗,公布的统计表就是事实.
(1)若不超过50元为小奖,不低于1000元为大奖,请计算参加活动的顾客抽一张奖券获得小奖的概率;
(2)你认为商场所说的“平均奖金180元”是否欺骗了顾客?请通过计算说明理由;
(3)从第一天的活动情况分析:中奖金额的众数是
 
元;中位数是
 
元.“平均奖金180元”的说法能否反映中奖的一般金额?为什么?

查看答案和解析>>

某商场店庆期间举办为期三天的“真情回报社会,购物(满188元)就送大礼”的幸运抽奖活动,共设五个奖金等级,最高奖金1万元,平均奖金180元.下面是商场公布的第一天活动情况统计表:
资金等级一等奖二等奖三等奖四等奖五等奖
资金额(元)10000500010005010
中奖人数3889300600
一名顾客抽到一张奖券,奖金数为10元,她调查了周围不少正在兑奖的其他顾客,很少有超过50元的,她气愤地去找商场的领导理论,领导解释说这不存在什么欺骗,公布的统计表就是事实.
(1)若不超过50元为小奖,不低于1000元为大奖,请计算参加活动的顾客抽一张奖券获得小奖的概率;
(2)你认为商场所说的“平均奖金180元”是否欺骗了顾客?请通过计算说明理由;
(3)从第一天的活动情况分析:中奖金额的众数是______元;中位数是______元.“平均奖金180元”的说法能否反映中奖的一般金额?为什么?

查看答案和解析>>

某商场店庆期间举办为期三天的“真情回报社会,购物(满188元)就送大礼”的幸运抽奖活动,共设五个奖金等级,最高奖金1万元,平均奖金180元.下面是商场公布的第一天活动情况统计表:
资金等级 一等奖 二等奖 三等奖 四等奖 五等奖
资金额(元) 10000 5000 1000 50 10
中奖人数 3 8 89 300 600
一名顾客抽到一张奖券,奖金数为10元,她调查了周围不少正在兑奖的其他顾客,很少有超过50元的,她气愤地去找商场的领导理论,领导解释说这不存在什么欺骗,公布的统计表就是事实.
(1)若不超过50元为小奖,不低于1000元为大奖,请计算参加活动的顾客抽一张奖券获得小奖的概率;
(2)你认为商场所说的“平均奖金180元”是否欺骗了顾客?请通过计算说明理由;
(3)从第一天的活动情况分析:中奖金额的众数是______元;中位数是______元.“平均奖金180元”的说法能否反映中奖的一般金额?为什么?

查看答案和解析>>

某商场店庆期间举办为期三天的“真情回报社会,购物(满188元)就送大礼”的幸运抽奖活动,共设五个奖金等级,最高奖金1万元,平均奖金180元。下面是商场公布的第一天活动情况统计表:
一名顾客抽到一张奖券,奖金数为10元,她调查了周围不少正在兑奖的其他顾客,很少有超过50元的,她气愤地去找商场的领导理论,领导解释说这不存在什么欺骗,公布的统计表就是事实。
(1)若不超过50元为小奖,不低于1000元为大奖,请计算参加活动的顾客抽一张奖券获得小奖的概率;(2)你认为商场所说的“平均奖金180元”是否欺骗了顾客?请通过计算说明理由;
(3)从第一天的活动情况分析:中奖金额的众数是______元;中位数是______元。“平均奖金180元”的说法能否反映中奖的一般金额?为什么?

查看答案和解析>>

某商场店庆期间举办为期三天的“真情回报社会,购物(满188元)就送大礼”的幸运抽奖活动,共设五个奖金等级,最高奖金1万元,平均奖金180元.下面是商场公布的第一天活动情况统计表:
资金等级一等奖二等奖三等奖四等奖五等奖
资金额(元)10000500010005010
中奖人数3889300600
一名顾客抽到一张奖券,奖金数为10元,她调查了周围不少正在兑奖的其他顾客,很少有超过50元的,她气愤地去找商场的领导理论,领导解释说这不存在什么欺骗,公布的统计表就是事实.
(1)若不超过50元为小奖,不低于1000元为大奖,请计算参加活动的顾客抽一张奖券获得小奖的概率;
(2)你认为商场所说的“平均奖金180元”是否欺骗了顾客?请通过计算说明理由;
(3)从第一天的活动情况分析:中奖金额的众数是______元;中位数是______元.“平均奖金180元”的说法能否反映中奖的一般金额?为什么?

查看答案和解析>>

一、选择题(每小题2分,共20分)

1.A  2.D  3.D  4.B  5.C  6.B  7.A  8.D  9.B 10.C

二、填空题(每小题3分,共24分)

11.   12.  13.9   14.()   15.2 

16.2   17.50°  18.5

三、解答题

19.解:原式=

=………………………………………………………………5分

=-时,原式==.………………………………………8分

20.解:(1)解:∵∠AOB =60°,OC平分∠BOA,∴

∵ PD∥OA,  ∴ ∠DPO=∠AOC =30°  ∴ DP=DO   ……………………  3分

过点D作DE⊥OP于E,则OE=OP. ……………………………………………      5分

在Rr△DOE中,cos∠DOE=6×cos30°=         … 7分

∴OP=.  即 OP的长为cm.        ……………………………………      8分

21.解:(1) 中小奖(不超过50元)的概率为. ……………… 2分

(2)没有欺骗顾客.             

因为

         (元)

所以平均奖金确实是180元.  …………………………………………………4分

(3)10;10.                   ………………………………………………… 6分

“平均奖金180元”的说法不能反映中奖的一般金额.因为平均数容易受极端值的影响,在此问题中,用众数或中位数都能反映中奖的一般金额.…………………8分

22.(1)由题意知直线交y轴于点D的坐标为(0,1),A点坐标为(2,3)

   ∴……………………………2分

(2)设直线l的一次函数的解析式为

∵直线l经过点A(2,3),点C(0,-2)

   解得:

∴直线l的一次函数的解析式为…………………………………………5分

(3)∵,∴

由图像知:当x>-1时直线表示的一次函数的函数值大于0;当x>时直线表示的一次函数的函数值大于0;…………………………………………………………7分

∴当x>时直线表示的一次函数的函数值大于0;……………………8分

23.解:⑴相等⑵9,⑶9,…………………………………………………3分

⑷△ADC的面积总等于△ABC的面积9。…………………………4分

证明如下:

∵△ABC和△BDE都是等边三角形∴∠ACB=∠DBC=60°

∴BD∥AC,……………………………………………………………………6分

(同底等高)∵

∴△ADC的面积总等于△ABC的面积9。…………………………………(8分)

(5)画图略。………………………………………………………………………………10分

24.(1)成立.    ……………………………………………………1分

如图,延长CB到E,使BE=DN,连接AE。??????????????????????????????????????????????????????????? 2分

证明:∵AB=AD,∠ABE=∠D=90°  ∴△ABE≌△AND………………………………3分

∴AE=AN, ∠BAE=∠NAD ………………………………………………………………4分

∵∠BAM+∠NAD=45°   ∴∠BAM+∠BAE =45°即∠EAM=∠MAN =45°

……………………………………………………………………5分

????????????????????????????????????????? 6分

(2)???????????????????????????????????????????????????????????????????????????????????????????????? 7分

证明略:方法同(1)………………………………………………………10分

25. (1) M(12,0),P(6,6). ……………………………………………………………4分

(2) 设此函数关系式为:.  ……………………………………5分

∵函数经过点(0,3),

,即. ………………………………………………6分

∴此函数解析式为:.……………………8分

(3) 设A(m,0),则

B(12-m,0),C,D . ………10分

∴“支撑架”总长AD+DC+CB =

= .  ………………………………………………………………………………………………11分

    ∵<0.  ∴ 当m = 0时,AD+DC+CB有最大值为18.  ………………………12分

26.(1)由题意知:BD=5,BQ=t,QC=4-t,DP=t,BP=5-t

∵PQ⊥BC   ∴△BPQ∽△BDC   ∴   ∴

时,PQ⊥BC……………………………………………………………………3分

(2)过点P作PM⊥BC,垂足为M

∴△BPM∽△BDC   ∴  ∴……………………4分

=…………………………………………5分

∴当时,S有最大值.……………………………………………………6分

(3)①当BP=BQ时,,  ∴……………………………………7分

②当BQ=PQ时,作QE⊥BD,垂足为E,此时,BE=

∴△BQE∽△BDC   ∴  即   ∴……………………9分

③当BP=PQ时,作PF⊥BC,垂足为F, 此时,BF=

∴△BPF∽△BDC   ∴  即   ∴……………………11分

,均使△PBQ为等腰三角形. …………………………12分

 

 


同步练习册答案