如图3.是正ABC内的一点.且 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系xOy中,直线y=kx+b交x轴负半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CA=
34
CO,△ABC的面积为6.
精英家教网
(1)求C点的坐标;
(2)求直线AB的解析式;
(3)D是第二象限内一动点,且OD⊥BD,直线BE垂直射线CD于E,OF⊥OD交直线BE于F.当线段OD,BD的长度发生改变时,∠BDF的大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值.
精英家教网

查看答案和解析>>

22、如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.图中的△ABC是一个格点三角形.
(1)请你在第一象限内画出格点△AB1C1,使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;
(2)写出B1、C1两点的坐标.

查看答案和解析>>

如图,在规格为8×8的正方形网格中建立平面直角坐标系,请在所给网格中按下列要求操作:
(1)直接写出A、B两点的坐标;
(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,求C点坐标;
(3)以(2)中△ABC的顶点C为旋转中心,画出△ABC旋转180°后所得到的△DEC,连接AE和BD,试判定四边形ABDE是什么特殊四边形,并说明理由.
精英家教网

查看答案和解析>>

14、如图,已知AB是半径为1的圆O的一条弦,且AB<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB,DC的延长线交圆O于点E,试探究AE的长是否为定值(不随AB长度的变化而变化)?若为定值,求出这个定值;若不为定值,试确定AE与AB长之间的关系.
AE=AB

查看答案和解析>>

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为
6
6
,∠APB=
150°
150°

查看答案和解析>>

一、选择题

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空题

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答题

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 证明:在中,--2分

分别是的中点,∴.   ∴.---------4分

(2) 四边形是矩形.

证明:∵四边形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四边形是平行四边形.        ------------- 7分

∴四边形是矩形.     ------------------------------------------------------------- 8分

18.解:过,垂足为,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)证明:在等腰梯形中,

        --------------------------------------------------1分

.                      -------------3分

(2) 解:过分别作,垂足分别为.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原来一天可获得的利润为 (元)-------2分

(2). ① 由题意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 当时,. ----------------------------6分

解这个方程,得.  ----------------------------------------------------------------8分

 答:出售单价是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函数解析式可知:只有点(1,4)和(3,1)在其图像上,所以,甲获胜的概率是,即平均每12次才获胜1次,得10分;而乙获胜的概率是,即平均每12次获胜11次,得11分,所以我愿意当乙.--------------------- 10分

22.(1) 四边形是平行四边形.            ------------------------------1分

证明:.又,..

四边形是平行四边形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的证明过程,可知分别是边长为的正三角形.

的距离为.即. -----------------8分,时, 四边形的面积有最大值是.

此时,重合,, 四边形是菱形. -------------------------11分

23.解:⑴过点轴,垂足为,由垂径定理,得的中点,

.轴相切于中,

的坐标是.            -----------------2分

的解析式为.将两点的坐标代入,得解得所在直线的解析式为         --------------------- 4分

(2) ∵,∴连结.

,∴          -----------------------6分

是直径,∴

         -------------------------------------------------------------------8分

(3) 判断:不存在.      ----------------------------------------------------------------- 9分

假设存在点,使为等边三角形.则.连结,那么.,利用的面积,可得,不与重合, .这与等边三角形定义矛盾.

假设不成立.即点不存在. ----------------------------------------------------------- 12分-

 

 

 


同步练习册答案