过作交于,交于,另一个与 查看更多

 

题目列表(包括答案和解析)

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A、B两点可构成直角三角形ABC,则称点C为A、B两点的勾股点.同样,点D也是A、B两点的勾股点.

(1)在矩形ABCD中,AB=12,BC=6,边CD上A,B两点的勾股点的个数为
3
3
个;
(2)如图1,矩形ABCD中,AB=12,BC=6,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M、N两点的勾股点,且点H在直线l上,求PH的长;
(3)如图2,矩形ABCD中,AB=12,BC=6,将纸片折叠,折痕分别与CD、AB交于点F、G,若A、E两点的勾股点为BC边的中点M,求折痕FG的长.

查看答案和解析>>

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);

(2 矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数

(3 如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.

【解析】(1)以线段AB为直径的圆与线段CD的交点,或线段CD的中点;

(2)利用(1)中图形得出C,D,E,F即可得出答案;

(3)求出MN的长度,根据勾股数的特点得出符合要求的点

 

查看答案和解析>>

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);

(2 矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数

(3 如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.

【解析】(1)以线段AB为直径的圆与线段CD的交点,或线段CD的中点;

(2)利用(1)中图形得出C,D,E,F即可得出答案;

(3)求出MN的长度,根据勾股数的特点得出符合要求的点

 

查看答案和解析>>

概念理解
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分--重拼”.如图1,一个梯形可以剖分--重拼为一个三角形;如图2,任意两个正方形可以剖分--重拼为一个正方形.
尝试操作
如图3,把三角形剖分--重拼为一个矩形.(只要画出示意图,不需说明操作步骤)

阅读解释
如何把一个矩形ABCD(如图4)剖分--重拼为一个正方形呢?操作如下:
①画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;
②图4中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
请说明按照上述操作方法得到的四边形EBHG是正方形.

拓展延伸
任意一个多边形是否可以通过若干次的剖分--重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由.

查看答案和解析>>

概念理解
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分--重拼”.如图1,一个梯形可以剖分--重拼为一个三角形;如图2,任意两个正方形可以剖分--重拼为一个正方形.
尝试操作
如图3,把三角形剖分--重拼为一个矩形.(只要画出示意图,不需说明操作步骤)

阅读解释
如何把一个矩形ABCD(如图4)剖分--重拼为一个正方形呢?操作如下:
①画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;
②图4中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
请说明按照上述操作方法得到的四边形EBHG是正方形.

拓展延伸
任意一个多边形是否可以通过若干次的剖分--重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由.

查看答案和解析>>

一、选择题

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空题

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答题

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 证明:在中,--2分

分别是的中点,∴.   ∴.---------4分

(2) 四边形是矩形.

证明:∵四边形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四边形是平行四边形.        ------------- 7分

∴四边形是矩形.     ------------------------------------------------------------- 8分

18.解:过,垂足为,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)证明:在等腰梯形中,

        --------------------------------------------------1分

.                      -------------3分

(2) 解:过分别作,垂足分别为.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原来一天可获得的利润为 (元)-------2分

(2). ① 由题意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 当时,. ----------------------------6分

解这个方程,得.  ----------------------------------------------------------------8分

 答:出售单价是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函数解析式可知:只有点(1,4)和(3,1)在其图像上,所以,甲获胜的概率是,即平均每12次才获胜1次,得10分;而乙获胜的概率是,即平均每12次获胜11次,得11分,所以我愿意当乙.--------------------- 10分

22.(1) 四边形是平行四边形.            ------------------------------1分

证明:.又,..

四边形是平行四边形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的证明过程,可知分别是边长为的正三角形.

的距离为.即. -----------------8分,时, 四边形的面积有最大值是.

此时,重合,, 四边形是菱形. -------------------------11分

23.解:⑴过点轴,垂足为,由垂径定理,得的中点,

.轴相切于中,

的坐标是.            -----------------2分

的解析式为.将两点的坐标代入,得解得所在直线的解析式为         --------------------- 4分

(2) ∵,∴连结.

,∴          -----------------------6分

是直径,∴

         -------------------------------------------------------------------8分

(3) 判断:不存在.      ----------------------------------------------------------------- 9分

假设存在点,使为等边三角形.则.连结,那么.,利用的面积,可得,不与重合, .这与等边三角形定义矛盾.

假设不成立.即点不存在. ----------------------------------------------------------- 12分-

 

 

 


同步练习册答案