题目列表(包括答案和解析)
(本题满分12分)设椭圆C:
(“a>b〉0)的左焦点为
,椭圆过点P(
).(1)求椭圆C的方程;
(2)已知点D(1, 0),直线l:
与椭圆C交于a、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.
(本小题满分12分)
已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。
(1)求动点P的轨迹方程,并讨论它表示什么曲线;
(2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N。若点N恰好落在以线段AB为直径的圆上,求θ的值。
若给定椭圆C:ax2+by2=1(a>0,b>0,a
b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设
,
,问
是否为定值?说明理由.
(本小题满分13分)(1)已知a>0且a
1常数,求函数
定义
域和值域;
(2)已知命题P:函数
在
上单调递增;命题Q:不等式
对任意实数
恒成立;若
是真命题,求实数
的取值范
围
(本小题满分12分)
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线
,使得
和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于
的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当
的面积最大时点P的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com