由得.则.---------------8分 查看更多

 

题目列表(包括答案和解析)

(8分)在T℃时,水的离子积为KW=1012,在此温度下,将pH=a的盐酸溶液Va L与pH=b的Ba(OH)2溶液Vb L混合:

(1)由数据可以判断T            25(填 “大于” 、“小于”、 “等于”);理由是:                                                        

(2)若所得混合液为中性,且a+b=10,则Va︰Vb           

(3)若所得混合液的pH=10,且a=2,b=12则Va︰Vb           

查看答案和解析>>

(本题8分)

已知函数处取得极值,并且它的图象与直线在点处相切.

(1)求函数的解析式;

(2)过点是否存在另一条与曲线相切的直线.若存在,则求出此切线的方程;若不存在,则说明理由.

查看答案和解析>>

(理)(本题8分)甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束.
(1)求只进行两局比赛,甲就取得胜利的概率;  
(2)求只进行两局比赛,比赛就结束的概率;
(3)求甲取得比赛胜利的概率.
20、(文)(本小题8分)甲、乙两人做定点投篮,投篮者若投中则继续投篮,否则由对方投篮,第一次甲投篮,已知甲、乙每次投篮命中的概率分别为,且甲、乙投篮是否命中互不影响.
(1)求第三次由乙投篮的概率;
(2)求前4次投篮中各投两次的概率.

查看答案和解析>>

(理)(本题8分)甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束.

   (1)求只进行两局比赛,甲就取得胜利的概率;  

(2)求只进行两局比赛,比赛就结束的概率;

   (3)求甲取得比赛胜利的概率.

20、(文)(本小题8分)甲、乙两人做定点投篮,投篮者若投中则继续投篮,否则由对方投篮,第一次甲投篮,已知甲、乙每次投篮命中的概率分别为,且甲、乙投篮是否命中互不影响.

(1)求第三次由乙投篮的概率;

(2)求前4次投篮中各投两次的概率.

 

查看答案和解析>>

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>


同步练习册答案