题目列表(包括答案和解析)
(本小题满分13分)
设a为实常数,已知函数
在区间[1,2]上是增函数,且
在区间[0,1]上是
减函数.
(Ⅰ)求常数
的值;
(Ⅱ)设点P为函数
图象上任意一点,求点P到直线
距离的最小值.
(Ⅲ)若当
且
时,
恒成立,求
的取值范围.
(本小题满分13分)
已知函数
(
为常数),直线l与函数
的图象都相切,且l与函数
的图象的切点的横坐标为l.
(Ⅰ)求直线l的方程及a的值;
(Ⅱ)当k>0时,试讨论方程
的解的个数.
(本小题满分13分)
已知二次函数
,直线
,直线![]()
(其中
,
为常数);.若直线
1、
2与函数
的图象以及
、
轴与函数
的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求
、
、
的值;
(Ⅱ)求阴影面积
关于
的函数
的解析式;
(Ⅲ)若
问是否存在实数
,使得
的图象与
的图象有且只有两个不同的交点?若存在,求出
的值;若不存在,说明理由.
![]()
(本小题满分13分)
已知二次函数
,直线
,直线![]()
(其中
,
为常数);.若直线
1、
2与函数
的图象以及
、
轴与函数
的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求
、
、
的值;
(Ⅱ)求阴影面积
关于
的函数
的解析式;
(Ⅲ)若
问是否存在实数
,使得
的图象与
的图象有且只有两个不同的交点?若存在,求出
的值;若不存在,说明理由.![]()
(本大题满分13分)
若存在常数k和b (k、b∈R),使得函数
和
对其定义域上的任意实数x分别满足:
和
,则称直线l:
为
和
的“隔离直线”.已知
,
(其中e为自然对数的底数).
(1)求
的极值;
(2)函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com