∵为常数. ------5分 查看更多

 

题目列表(包括答案和解析)

有以下三个不等式:

 

请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论。

【解析】根据已知条件可知归纳猜想结论为

下面给出运用综合法的思想求解和证明。解:结论为:.     …………………5分

证明:

所以

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

(2009•闵行区二模)(文)本题共有3个小题,第1、2小题满分各5分,第3小题满分7分.第3小题根据不同思维层次表现予以不同评分.
对于数列{an}
(1)当{an}满足an+1-an=d(常数)且
an+1
an
=q
(常数),证明:{an}为非零常数列.
(2)当{an}满足an+12-an2=d'(常数)且
a
2
n+1
a
2
n
=q′
(常数),判断{an}是否为非零常数列,并说明理由.
(3)对(1)、(2)等式中的指数进行推广,写出推广后的一个正确结论(不用说明理由).

查看答案和解析>>

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是
5

(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

(2007•成都一模)某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有淡季旺季之分.通过市场调查发现:
①销售量r(x)(件)与衬衣标价x(元/件)在销售旺季近似地符合函数关系:r(x)=kx+b1;在销售淡季近似地符合函数关系:r(x)=kx+b2,其中k<0,b1、b2>0且k、b1、b2为常数;
②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;
③若称①中r(x)=0时的标价x为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.
请根据上述信息,完成下面问题:
(Ⅰ)填出表格中空格的内容;
数量关系

销售季节
标价
(元/件)
销售量r(x)(件)
(含k、b1或b2)
不同季节的销售总利润y(元)
与标价x(元/件)的函数关系式
旺  季 x r(x)=kx+b1
淡  季 x
(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元才合适?

查看答案和解析>>


同步练习册答案