题目列表(包括答案和解析)
(本题满分 13分)
集合
为集合
的
个不同的子集,对于任意不大于
的正整数
满足下列条件:
①
,且每一个
至
少含有三个元素;
②
的充要条件是
(其中
)。
为了表示这些子集,作
行
列的数表(即
数表),规定第
行第
列数为:
。
(1)该表中每一列至少有多少个1;若集合
,请完成下面
数表(填符合题意的一种即可);![]()
(2)用含
的代数式表示
数表
中1的个数
,并证明
;
(3)设数列
前
项和为
,数列
的通项公式为:
,证明不等式:
对任何正整数
都成立。
(本小题满分13分)数列{
}从第一项开始按照从上到下,从左到右的规律排列成如图所示的“三角阵”,即第一行是1个1,第二行是2个2,第三行是3个3,……,第n行是n个n(
)
(1)数列{
}中第几项到第几项为数字20
(2)求数列{
}中的第2011项
![]()
((本小题共13分)
若数列
满足
,数列
为
数列,记
=
.
(Ⅰ)写出一个满足
,且
〉0的
数列
;
(Ⅱ)若
,n=2000,证明:E数列
是递增数列的充要条件是
=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列
,使得
=0?如果存在,写出一个满足条件的E数列
;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以
.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故
是递增数列.综上,结论得证。
(本小题满分13分)
如果有穷数列
(
为正整数)满足条件
,
,…,
,即
(
),我们称其为“对称数列” .
例如,数列
与数列
都是“对称数列”.
(Ⅰ)设
是7项的“对称数列”,其中
是等差数列,且
,
.依次写出
的每一项;
(Ⅱ)设
是
项的“对称数列”,其中
是首项为
,公比为
的等比数列,求
各项的和 .
(本小题满分13分)数列{
}从第一项开
始按照从上到下,从左到右的规律排列成如图所示的“三角阵”,即第一行是1个1,第二行是2个2,第三行是3个3,……,第n行是n个n(
)![]()
(1)数列{
}中第几项到第几项为数字20
(2)求数列{
}中的第201
1项
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com