已知 (1)设A,B,C为三角形ABC的内角,当取得最小值时,求∠C (2)当A+B=且A,B∈R时,y= 的图象通过向量p的平移得到函数y=2cos2A的图象,求向量p 查看更多

 

题目列表(包括答案和解析)

已知平面内动点P(x,y)到定点F(1,0)的距离与其到定直线l:x=4的距离之比是
12
,设动点P的轨迹为M,轨迹M与x轴的负半轴交于点A,过点F的直线交轨迹M于B、C两点.
(1)求轨迹M的方程;
(2)证明:当且仅当直线BC垂直于x轴时,△ABC是以BC为底边的等腰三角形;
(3)△ABC的面积是否存在最值?如果存在,求出最值;如果不存在,说明理由.

查看答案和解析>>

已知平面内动点P(x,y)到定点F(1,0)的距离与其到定直线l:x=4的距离之比是,设动点P的轨迹为M,轨迹M与x轴的负半轴交于点A,过点F的直线交轨迹M于B、C两点.
(1)求轨迹M的方程;
(2)证明:当且仅当直线BC垂直于x轴时,△ABC是以BC为底边的等腰三角形;
(3)△ABC的面积是否存在最值?如果存在,求出最值;如果不存在,说明理由.

查看答案和解析>>

已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,则,解得,因为顶点C在第一象限,所以,即代入直线,所以的取值范围是,选A.

 

查看答案和解析>>

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sinAsinC=
3
4

(Ⅰ)求角B的大小;
(Ⅱ)设向量
m
=(cosA,cos2A),
n
=(-
12
5
,1),当
m
n
取最小值时,判断△ABC的形状.

查看答案和解析>>


同步练习册答案