题目列表(包括答案和解析)
已知数列
是首项为
的等比数列,且满足![]()
.
(1) 求常数
的值和数列
的通项公式;
(2) 若抽去数列
中的第一项、第四项、第七项、……、第
项、……,余下的项按原来的顺序组成一个新的数列
,试写出数列
的通项公式;
(3) 在(2)的条件下,设数列
的前
项和为
.是否存在正整数
,使得
?若存在,试求所有满足条件的正整数
的值;若不存在,请说明理由.
【解析】第一问中解:由
得
,,
又因为存在常数p使得数列
为等比数列,
则
即
,所以p=1
故数列
为首项是2,公比为2的等比数列,即
.
此时
也满足,则所求常数
的值为1且![]()
第二问中,解:由等比数列的性质得:
(i)当
时,
;
(ii) 当
时,
,
所以![]()
第三问假设存在正整数n满足条件,则
,
则(i)当
时,
![]()
,
(本小题满分12分)
已知
(1)求
的值;
(2)当
(其中
,且
为常数)时,
是否存在最小值,如果存在求出最小值;如
果不存在,请说明理由;
(3)当
时,求满足不等式
的
的范围.
(本题满分14分)
数列
,
(
)由下列条件确定:①
;②当
时,
与
满足:当
时,
,
;当
时,
,
.
(Ⅰ)若
,
,写出
,并求数列
的通项公式;
(Ⅱ)在数列
中,若
(
,且
),试用
表示![]()
;
(Ⅲ)在(Ⅰ)的条件下,设数列![]()
满足
,
,
(其中
为给定的不小于2的整数),求证:当
时,恒有
.
某个命题与正整数n有关,如果当
时命题成立,那么可推得当
时命题也成立. 现已知当
时该命题不成立,那么可推得 ( )
A.当n=6时该命题不成立 B.当n=6时该命题成立
C.当n=8时该命题不成立 D.当n=8时该命题成立
(12分)已知
,点P的坐标为
.
(I)求当
时,P满足
的概率;
(II)求当
时,P满足
的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com