抛物线y=a(x-h)2+k的图象平移 函数y=a(x-h)2+k的图象是将函数y=ax2的图象先向上或向下平移|k|个单位.再向左或右平移|h|个单位得到的. 2+k的图象是将函数y=ax2的图象先向左或右平移|h|个单位.再向上或向下平移|k|个单位得到的.) (移动规律可以简单记作:左加右减.上加下减) 查看更多

 

题目列表(包括答案和解析)

将抛物线y=-x2+4x+3a-1按向量平移,其顶点与抛物线y=x2+x+a的顶点重合,求ha的值

查看答案和解析>>

将抛物线y=-x2+4x+3a-1按向量平移,其顶点与抛物线y=x2+x+a的顶点重合,求ha的值

查看答案和解析>>

(2012•辽宁模拟)如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M相切于A、两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
174

(Ⅰ)求抛物线C的方程;
(Ⅱ)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在y轴上的截距为t,求t的最小值.

查看答案和解析>>

(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.

(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.

       图1                        图2                          图3

 

查看答案和解析>>

 如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.

(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.

       图1                        图2                          图3

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案