(1)连AC..则EF∥AC.因为AC⊥BD.所以BD⊥EF.因为⊥平面ABCD.所以⊥EF.所以∠为二面角的平面角.在Rt△中...所以. (2)在棱上取中点M.连.因为EF⊥平面.所以EF⊥.在正方形中.因为M.F分别为.BC的中点.所以⊥.又因为⊥平面.所以⊥.所以⊥.所以⊥平面. (3)设与平面交于点N.则为点到平面的距离.在Rt△中..因为..所以.故点到平面的距离为 3 (I)是正四棱柱 平面ABCD 连AC.又底面ABCD是正方形 由三垂线定理知., 同理.平面AEC (II) 平面ABC 的长为E点到平面ABC的距离 (III)连CF 平面.又 由三垂线定理知. 于是.为二面角的平面角 在中. , 在中. 即二面角的正切角为 4(1) 面面.因为面面=..所以面. (2)取中点.连接.在中. 是正三角形..又面且面. .即即为二面角的平面角为30°. 面..在 中.. 又面.即与面所成的线面角. 在中. (3)在上取点.使.则因为是的中线.是的重心.在中.过作//交于. 面.//面.即点在平面上的射影是的中心.该点即为所求.且.. 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

平面上A(-2,1),B(1,4),D(4,-3),C点满足
AC
=
1
2
CB
,连DC并延长至E,使|
CE
|=
1
4
|
ED
|
,则点E坐标为
 

查看答案和解析>>

平面上A(-2,1),B(1,4),D(4,-3),C点满足
AC
=
1
2
CB
,连DC并延长至E,使|
CE
|=
1
4
|
ED
|,则点E坐标为(  )
A、(-8,-
5
3
B、(-
8
3
11
3
C、(0,1)
D、(0,1)或(2,
11
3

查看答案和解析>>

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

平面上A(-2,1),B(1,4),D(4,-3),C点满足
AC
=
1
2
CB
,连DC并延长至E,使|
CE
|=
1
4
|
ED
|,则点E坐标为(  )
A.(-8,-
5
3
B.(-
8
3
11
3
C.(0,1)D.(0,1)或(2,
11
3

查看答案和解析>>


同步练习册答案