21.解:(1)设椭圆方程为 将..代入椭圆E的方程.得 解得. ∴椭圆的方程 (2).设边上的高为 当点在椭圆的上顶点时.最大为.所以的最大值为. 设的内切圆的半径为.因为的周长为定值6.所以. 所以的最大值为.所以内切圆圆心的坐标为 (3)将直线代入椭圆的方程并整理. 得. 设直线与椭圆的交点. 由根系数的关系.得. 直线的方程为:.它与直线的交点坐标为 同理可求得直线与直线的交点坐标为. 下面证明.两点重合.即证明.两点的纵坐标相等: . 因此结论成立. 综上可知.直线与直线的交点住直线上. 查看更多

 

题目列表(包括答案和解析)

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>


同步练习册答案