⒘ 已知集合,. ⑴求, ⑵若.求的取值范围. ⒙计算. ⒚证明函数是奇函数. ⒛拟定哈市出租车的计价标准是3km以内9元,超过3km且不超过18km的部分1.9元/km,超出18公里的部分2.3元/km. ⑴如果不计等待时间的费用,建立车费与行车里程的函数关系式; ⑵如果某人乘车行驶了20km,他要付多少车费? 21.已知满足不等式. 求函数的最大值和最小值.. 查看更多

 

题目列表(包括答案和解析)

(本题满分16分)本题共有2个小题,第1小题满分7分,第2小题满分9分.

已知是偶函数.

b的值;

若在函数定义域内总存在区间(m<n),使得在区间上的函数值组成的集合也是,求实数a的取值范围.

查看答案和解析>>

(本题满分16分)本题共有2个小题,第1小题满分7分,第2小题满分9分.

已知是偶函数.

b的值;

若在函数定义域内总存在区间(m<n),使得在区间上的函数值组成的集合也是,求实数a的取值范围.

查看答案和解析>>

(本题满分14分)本题共有2个小题,每小题满分各7分.

已知集合

(1)若,求实数a的值;

(2)若,求实数a的取值范围;

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>


同步练习册答案