题目列表(包括答案和解析)
如图,矩形EFGH的边EF=6cm,EH=3cm,在平行四边形ABCD中,BC=10cm,AB=5cm,sin∠ABC=
,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止。
(1)在矩形运动过程中,何时矩形的一边恰好通过平行四边形ABCD的边AB或CD的中点?
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以
cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(
)与运动时间t(s)之间的函数关系式,并写出时间t的范围。是否存在某一时刻,使得重叠部分的面积S=16.5
?若存在,求出时间t,若不存在,说明理由。
![]()
| 3 |
| 5 |
| 1 |
| 2 |
| 3 | 5 |
如图,矩形EFGH的边EF=6cm,EH=3cm,在平行四边形ABCD中,BC=10cm,AB=5cm,sin∠ABC=
,点EFBC在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右移动,当D点落在边CF所在直线上即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过平行四边形的边AB或CD的中点?
(2)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.
(3)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以0.5cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在进行一边上运动的时间为多少s?![]()
一、填空题:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
.files/image745.jpg)
7.2
-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
.files/image749.jpg)
14..files/image751.gif)
15. (-8,0)。
16.6。
17. .平行四边形。
18.60
19.4,12
二、选择题:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答题:
1.(1)如图答2,因为AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四边形ABCD为平行四边形.---------------------------------------------------------------- 3分
分别过点B、D作BF⊥AD,DE⊥AB,垂足分别为点E、F.
则BE = CF.-------------------------------------------------------------------------------------------- 4分
因为∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四边形ABCD为菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 当∠DAB = 90°时,菱形ABCD为正方形,周长最小值为8;---------------------------8分
② 当AC为矩形纸片的对角线时,设AB = x,如图答3,在Rt△BCG中,
.files/image754.gif)
,
.所以周长最大值为17.-------------------------------------------9分
2.证明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
证得:△AOE≌△COF-----------------------------------------------------------3′
证得:四边形AECF是平行四边形------------------------------------------------5′
由AC⊥EF可知:四边形AECF是菱形 -------------------------------------------6′
.files/image760.jpg)
.files/image762.jpg)
5.(本题满分8分)
解:(1)方法一:如图①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分别平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF.
…………………………4分
![]() |
|||
|