题目列表(包括答案和解析)
| 月份x | 1月 | 5月 |
| 销售量P(棵) | 4100 | 4500 |
如图,在一张圆桌(圆心为点O)的正上方点A处吊着一盏照明灯,实践证明:桌子边沿处的光的亮度与灯距离桌面的高度AO有关,且当sin∠ABO=
时,桌子边沿处点B的光的亮度最大,设OB=60cm,求此时灯距离桌面的高度OA(结果精确到1cm).
(参考数据:
≈1.414;
≈1.732;
≈2.236)
![]()
(本题满分8分)元旦,小美和同学一起到游乐场游玩.游乐场的大型摩天轮的半径为20m,匀速旋转1周需要12min.小美乘坐最底部的车厢(离地面约0.5m)开始1周的观光.请回答下列问题:(参考数据:
≈l.414,
≈1.732)
![]()
1. (1) 1.5min后小美离地面的高度是 ▲ m.(精确到0.1m)
2.(2)摩天轮启动 ▲ min后,小美离地面的高度将首次达到10.5m.
3.(3)小美将有 ▲ min连续保持在离地面10.5m以上的空中.
4.(4)t min(0≤t≤6)后小美离地面的高度h是多少?(结果用t表示)
如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:
≈1.414,
≈1.732,
≈2.449)![]()
一、填空题:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
.files/image745.jpg)
7.2
-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
.files/image749.jpg)
14..files/image751.gif)
15. (-8,0)。
16.6。
17. .平行四边形。
18.60
19.4,12
二、选择题:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答题:
1.(1)如图答2,因为AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四边形ABCD为平行四边形.---------------------------------------------------------------- 3分
分别过点B、D作BF⊥AD,DE⊥AB,垂足分别为点E、F.
则BE = CF.-------------------------------------------------------------------------------------------- 4分
因为∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四边形ABCD为菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 当∠DAB = 90°时,菱形ABCD为正方形,周长最小值为8;---------------------------8分
② 当AC为矩形纸片的对角线时,设AB = x,如图答3,在Rt△BCG中,
.files/image754.gif)
,
.所以周长最大值为17.-------------------------------------------9分
2.证明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
证得:△AOE≌△COF-----------------------------------------------------------3′
证得:四边形AECF是平行四边形------------------------------------------------5′
由AC⊥EF可知:四边形AECF是菱形 -------------------------------------------6′
.files/image760.jpg)
.files/image762.jpg)
5.(本题满分8分)
解:(1)方法一:如图①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分别平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF.
…………………………4分
![]() |
|||
|