梯形问题三角形或平行四边形问题即通过添加辅助线把梯形分割或拼接而转化为三角形或平行四边形.要解答这类题目必须熟悉梯形中常用的添加辅助线的方法. 总之.四边形在整张试卷中所占的比例还是比较大的.再复习中要多见题型. 查看更多

 

题目列表(包括答案和解析)

梯形问题通常是通过分割和拼接转化为三角形或平行四边形,其分割拼接的方法有如下几种( 如图) :
(1) 平移一腰,即从梯形的一个顶点______ ,把梯形分成一个平行四边形和一个三角形( 图1 所示) ;
(2)从同一底的两端______,把梯形分成一个矩形和两个直角三角形(图2所示);
(3)平移对角线,即过底的一端______,可以借助新得的平行四边形或三角形来研究梯形(图3所示);
(4)延长梯形的两腰______,得到两个三角形,如果梯形是等腰梯形,则得到两个等腰三角形(图4所示);
(5)以梯形一腰的中点为______,作某图形的中心对称图形(图5、图6所示);    
(6)以梯形一腰为______,作梯形的轴对称图形(图7所示)。
  

查看答案和解析>>

11、如图,将一张等腰直角三角形纸片沿中位线DE剪开后,可以拼成的四边形是(  )

查看答案和解析>>

操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD.
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G.则四边形FF1G1G的形状是
 

精英家教网
操作、思考并探究:
(1)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点.依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH.请判断四边形纸片EFGH的形状,并说明理由.
(2)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图.
精英家教网
(3)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2,S3=5,则四边形ABCD是面积是
 
.(不要求说明理由)

查看答案和解析>>

一个矩形薄木版在太阳光下形成的投影可能是
平行四边形或线段
平行四边形或线段
(在“梯形”、“矩形”、“平行四边形”、“三角形”、“线段”、“一般四边形”中选择两个即可).

查看答案和解析>>

如图,在等腰梯形ABCD中,AB∥DC,AB=9cm,CD=3cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运精英家教网动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒.
(1)当DQ=AP时,四边形APQD是平行四边形,求出此时t的值;
(2)当PQ将梯形ABCD分成一个平行四边形和一个等边三角形时,求t的值;
(3)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

一、填空题:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四边形。

18.60

19.4,12           

二、选择题:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答题:

11如图答2,因为AD∥BC,AB∥DC  ------------------------------------------------- 2分

所以四边形ABCD为平行四边形.---------------------------------------------------------------- 3分

分别过点B、D作BF⊥AD,DE⊥AB,垂足分别为点E、F.

则BE = CF.-------------------------------------------------------------------------------------------- 4分

因为∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四边形ABCD为菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 当∠DAB = 90°时,菱形ABCD为正方形,周长最小值为8;---------------------------8分

② 当AC为矩形纸片的对角线时,设AB = x,如图答3,在Rt△BCG中,

.所以周长最大值为17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.证明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              证得:△AOE≌△COF-----------------------------------------------------------3′

          证得:四边形AECF是平行四边形------------------------------------------------5′

       由AC⊥EF可知:四边形AECF是菱形 -------------------------------------------6′

 

 

5.(本题满分8分)

解:(1)方法一:如图①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AEBF分别平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

图②

 

 

 

 

 

 

方法二:如图②,延长BC、AE相交于点P     

∵在ABCD中,AD∥BC

∴∠DAP=∠APB                                               …………………………1分

∵AE平分∠DAB

∴∠DAP=∠PAB                                               …………………………2分

∴∠APB=∠PAB

∴AB=BP                                                                   ………………………3分

∵BF平分∠ABP

∴:AP⊥BF

即AE⊥BF.                                                            ………………………4分

(2)方法一:线段DFCE是相等关系,即DF=CE     ………………5分

∵在ABCD中,CDAB

∴∠DEA=∠EAB

又∵AE平分∠DAB

∴∠DAE=∠EAB

∴∠DEA=∠DAE

DEAD                                         ………………………6分

同理可得,CFBC                               ………………………7分

又∵在ABCD中,ADBC

DECF

DEEFCFEF

DFCE.                                         ………………………8分

方法二:如右图,延长BC、AE设交于点P,延长AD、BF相交于点O       …5分

∵在ABCD中,AD∥BC

∴∠DAP=∠APB                                                   

∵AE平分∠DAB

∴∠DAP=∠PAB                                                  

∴∠APB=∠PAB

∴BP=AB

同理可得,AO=AB                 

    ∴AO=BP                                   ………………………6分

        ∵在ABCD中,AD=BC

        ∴OD=PC

 又∵在ABCD中,DC∥AB

       ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

       ∴

       ∴DF=CE.                                                                     ………………………8分

 

6. (1)(2)略   (3)设BC=x,则DC=x  ,BD=,CF=(-1)x

GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

(4-2)x2=4(4-2)    x2=4   正方形ABCD的面积是4个平方单位

 

 

7.(本小题满分5分)

证明:∵  AB∥CD

∴                …………1分

∵ 

∴  △ABO≌△CDO                 …………3分

∴                      …………4分

∴  四边形ABCD是平行四边形       …………5分

 

 

 

 

 

11.证明:(1)①在中,

,????????????????????????????????????????????????????????????????????????? 2分

.????????????????????????????????????????????????????????????????????????????????????????????????? 3分

.?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

 

12.(本题7分)

解:(1)在梯形中,

.?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

.?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

的函数表达式是

;??????????????????????????????????????????????????????????????????????????????????????? 5分

(2)

.?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

时,有最大值,最大值为.??????????????????????????????????????????????????????????????????? 7分

 

 

 

13.证明:菱形中,.???????????????????? 1分

分别是的中点,

.?????????????????? 3分

.????????????????? 5分

.??????????????????????????????? 7分

14.

15.证明:四边形是平行四边形,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

平分.????????????????????????????????????????????????????????????????? 2分

.??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

.??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

.???????????????????????????????????????????????????????????????????????????????????? 5分

 

16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但却不相等.合理定义方法不唯一,如定义为越小,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

17.解:(1)正方形中,

,因此,即菱形的边长为

中,

,即菱形是正方形.

同理可以证明

因此,即点边上,同时可得

从而.????????????????????????????????????????????????????????????????????????????????????????? 2分

(2)作为垂足,连结

中,

,即无论菱形如何变化,点到直线的距离始终为定值2.

因此.??????????????????????????????????????????????????????????????????????????? 6分

(3)若,由,得,此时,在中,

相应地,在中,,即点已经不在边上.

故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

另法:由于点在边上,因此菱形的边长至少为

当菱形的边长为4时,点边上且满足,此时,当点逐渐向右运动至点时,的长(即菱形的边长)将逐渐变大,最大值为

此时,,故

而函数的值随着的增大而减小,

因此,当时,取得最小值为

又因为,所以,的面积不可能等于1.????????????????????? 9分

18.

19.证明:在等腰中,

     .又

     .????????????????????????????????????????????????????????????????????????? 3分

     

     .?????????????????? 5分

     又不平行,四边形是梯形.??????????????????????????????????? 7分

     四边形是等腰梯形.(理由:同一底上的两底角相等的梯形是等腰梯形,或两腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

 

20.解:(1)在矩形中,

.……………………1分

    

    ,即

同步练习册答案