题目列表(包括答案和解析)
| AP |
| BP |
| PC |
4
| ||
| 5 |
| 2 |
| 2 |
| 1 |
| 2 |
在平面直角坐标系中,若
,且
,
(1)求动点
的轨迹
的方程;
(2)已知定点
,若斜率为
的直线
过点
并与轨迹
交于不同的两点
,且对于轨迹
上任意一点
,都存在
,使得
成立,试求出满足条件的实数
的值。
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
已知
、
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点
的轨迹
的方程;
(2)过点
任意作直线
(与
轴不垂直),设
与(1)中轨迹
交于
两点,与
轴交于
点.若
,
,证明:
为定值.
一、CABCB BDADD AC
二、13. 0.1;14.
;15. 36;16.存在,通项公式
。
三、
17.解:(1)依题意得:

得:
,
所以:
,即
,………………………………4分
|