题目列表(包括答案和解析)
解:(Ⅰ)设
:![]()
,其半焦距为![]()
.则
:
.
由条件知
,得
.
的右准线方程为
,即
.
的准线方程为
.
由条件知
, 所以
,故
,
.
从而
:
,
:
.
(Ⅱ)由题设知
:
,设
,
,
,
.
由
,得
,所以
.
而
,由条件
,得
.
由(Ⅰ)得
,
.从而,
:
,即
.
由
,得
.所以
,
.
故
.
如图,在三棱锥
中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一问中利用因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面
的法向量
而
,故点B到平面
的距离![]()
第二问中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,
再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故点B到平面
的距离![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
| (c×2-bx+a) |
| x2 |
| 1 |
| x |
| b |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| b |
| (x+a) |
| (x+c) |
| (x+d) |
| bx |
| (ax-1) |
| (cx-1) |
| (dx-1) |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| A、b=20,A=45°,C=80° | B、a=30,c=28,B=60° | C、a=14,b=16,A=45° | D、a=12,c=15,A=120° |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com