(2)由①式的 查看更多

 

题目列表(包括答案和解析)

由坐标原点O向函数y=x3-3x2的图象W引切线l1,切点为P1(x1,y1)(P1,O不重合),再由点P1引W的切线l2,切点为P2(x2,y2)(P1,P2不重合),…,如此继续下去得到点列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn与xn+1满足的关系式;
(Ⅲ)求数列{xn}的通项公式.

查看答案和解析>>

由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
t(时) 0 3 6 9 12 15 18 21 24
y(米) 2 5 2 0 15 20 249 2 151 199 2 5
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.

查看答案和解析>>

精英家教网由图写出y=Asin(ωx+φ)的解析式,其中-π≤φ≤π.A>0,ω>0.

查看答案和解析>>

由原点O向三次曲线y=x3-3ax2(a≠0)引切线,切点为P1(x1,y1)(O,P1两点不重合),再由P1引此曲线的切线,切于点P2(x2,y2)(P1,P2不重合),如此继续下去,得到点列:{Pn(xn,yn)}
(1)求x1
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>


同步练习册答案