C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题(每小题5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空题(每题4分,共16分)

13、          14、        15、1     16、15

三、解答题(共74分)

17、(本小题满分12分)

(1)

函数的最小正周期是

时,即时,函数有最大值1。

(2)由,得

时,取得,函数的单调递减区间是

(3)

18、(本小题满分12分)

(1)由题意知:,∴=1

①,∴当 n≥2时,

①-②得:

>0,∴,(n≥2且

是以=1为首项,d=1为公差的等差数列

=n

(2)

是以为首项,为公比的等比数列

,∴

                        ①

           ②

①-②得

19、(本小题满分12分)

(1)当时,

上是增函数

上是增函数

∴当时,

(2)上恒成立

上恒成立

上恒成立

上是减函数,

∴当时,

∴所求实数a的取值范围为

20、(本小题满分12分)

此时

,∴,∴

∴实数a不存在

21、(本小题满分12分)

(1)若方程表示圆,则,∴

(2)设M、N的坐标分别为

,得

,∴,∴    ①

,得

代入①得

(3)设MN为直径的圆的方程为

∴所求圆的方程为

22、(本小题满分14分)

(1)当时,

设x为其不动点,则,即

或2,即的不动点是-1,2

(2)由

由题意知,此方程恒有两个相异的实根

对任意的恒成立

,∴

(3)设,则直线AB的斜率,∴

由(2)知AB中点M的坐标为

又∵M在线段AB的垂直平分线上,∴

(当且仅当时取等号)

∴实数b的取值范围为

 

 


同步练习册答案