17. 查看更多

 

题目列表(包括答案和解析)

(选修4-2:矩阵与变换)(本小题满分10分)
求矩阵A=
32
21
的逆矩阵.

查看答案和解析>>

必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.
(Ⅰ)求an
(Ⅱ)是否存在等差数列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn对一切正整数n都成立?并证明你的结论.

查看答案和解析>>

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

(本小题满分10分)等体积的球和正方体,试比较它们表面积的大小关系.

查看答案和解析>>

 

一.选择

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

B

A

C

A

D

B

C

B

A

B

二.填空

13.      14. 0      15.100     16.  ②③④

三。解答题

17.(满分10分)

(1)    ,∴,∴

    (5分)

(2)

      ,∴f(x)的值域为           (10分)

18.解:(1)拿每个球的概率均为,两球标号的和是3的倍数有下列4种情况:

(1,2),(1,5),(2,4),(3,6)每种情况的概率为:

所以所求概率为:   (6分)

(2)设拿出球的号码是3的倍数的为事件A,则,拿4次至少得2分包括2分和4分两种情况。

      (12分)

 

19 (满分12分)

解法一:(Ⅰ)取BC中点O,连结AO.

为正三角形,.……3分

 连结,在正方形中,分别为的中点,

由正方形性质知.………5分

又在正方形中,

平面.……6分

(Ⅱ)设AB1与A1B交于点,在平面1BD中,

,连结,由(Ⅰ)得

为二面角的平面角.………9分

中,由等面积法可求得,………10分

所以二面角的大小为.……12分

解法二:(Ⅰ)取中点,连结.取中点,以为原点,如图建立空间直角坐标系,则

……3分

平面.………6分

(Ⅱ)设平面的法向量为

为平面的一个法向量.……9分

由(Ⅰ)为平面的法向量.……10分

所以二面角的大小为.……12分

20.(满分12分)解:(I)

      ①                   …2分

,      ②                                      …4分

            ③                                     … 6分

联立方程①②③,解得                         … 7分

   (II)

                             … 9分

x

(-∞,-3)

-3

(-3,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

极大

极小

                                             

    故h(x)的单调增区间为(-∞,-3),(1,+∞),单调减区间为(-3,1)

 

21.(满分12分)

解:(1)∵,∴.

).

).

).

).                    …3分

数列等比,公比,首项

,且,∴.

.  

.                                …6分

(2)

.

,        ①

∴2.       ②

①-②得 -

           

            ,                                   …9分

.                                               …12分

22.(满分12分)

解:⑴设Q(x0,0),由F(-c,0)                              

A(0,b)知

                                       …2分

,得                            …4分

因为点P在椭圆上,所以                             …6分

整理得2b2=3ac,即2(a2-c2)=3ac,故椭圆的离心率e=      …8分

⑵由⑴知

于是F(-a,0), Q

△AQF的外接圆圆心为(a,0),半径r=|FQ|=a                        …10分

所以,解得a=2,∴c=1,b=,所求椭圆方程为  …12分

 

 

 

 

 

 

 


同步练习册答案