中与的大小.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(08年天津南开区质检二文)  (12分)

已知等比数列,公比q,Sn的前n项的和,且

(1)求数列的通项公式;

(2)设,求数列的前项和

(3)比较(2)中的大小,并说明理由。

查看答案和解析>>

(08年天津南开区质检二文) (12分)

已知等比数列,公比q,Sn的前n项的和,且

(1)求数列的通项公式;

(2)设,求数列的前项和

(3)比较(2)中的大小,并说明理由。

查看答案和解析>>

(本小题满分14分) 

),g(x)是f(x)的反函数.

(Ⅰ)求

(Ⅱ)当时,恒有成立,求t的取值范围;

(Ⅲ)当0<a≤时,试比较f(1)+f(2)+…+f(n)与的大小,并说明理由.

查看答案和解析>>

 

(Ⅰ)求

(Ⅱ)当时,恒有成立,求t的取值范围;

(Ⅲ)当0<a≤时,试比较f(1)+f(2)+…+f(n)与的大小,并说明理由.

 

 

查看答案和解析>>

(本小题满分14分) 

),g(x)是f(x)的反函数.

(Ⅰ)求

(Ⅱ)当时,恒有成立,求t的取值范围;

(Ⅲ)当0<a≤时,试比较f(1)+f(2)+…+f(n)与的大小,并说明理由.

查看答案和解析>>

一、选择题(60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空题(20分)

13.  15    14.5 15.   16.

三、解答题(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)记“甲恰好投进两球”为事件A,则           (6分)

(2)记“甲比乙多投进两球”,其中“恰好甲投进两球且乙未投进”为事件,“恰好甲投进三球且乙投进一球”为事件,根据提议,互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)设数列的公比为,则

                                                                         (文6分,理4分)

(2)由(1)可知

所以数列是一个以为首项,1为公差的等差数列

                       (文12分,理8分)

(3)∵

∴当时,,即

  当时,,即

综上可知:时,时,       (理12分)

21. ⑴由已知

     

     所求双曲线C的方程为;

⑵设P点的坐标为,M,N的纵坐标分别为.

 

 

    

共线

同理

              

22.

(1)由题意得:

∴在;在;在

在此处取得极小值

由①②③联立得:

                                                         (6分)

(2)设切点Q

求得:,方程有三个根。

需:

故:

因此所求实数的取值范围为:                     (理12

 

 


同步练习册答案