题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
一、选择题(每小题5分,共60分)
1-12BDCBC CCDBA AC
二、填空题(每题4分,共16分)
13、
14、
15、1 16、15
三、解答题(共74分)
17、(本小题满分12分)
(1)
函数
的最小正周期是
当
时,即
时,函数有最大值1。
(2)由
,得
当
时,取
得,函数
的单调递减区间是
(3)

18、(本小题满分12分)
(1)由题意知:
且
,∴
=1
∵
①,∴当 n≥2时,
②
①-②得:
∴
∵
>0,∴
,(n≥2且
)
∴
是以
=1为首项,d=1为公差的等差数列
∴
=n
(2)
∴
是以
为首项,
为公比的等比数列
∴
,∴
,
∴
①
∴
②
①-②得
∴
19、(本小题满分12分)
(1)当
时,
在
上是增函数
∴
在
上是增函数
∴当
时,
(2)
在
上恒成立
∴
在
上恒成立
∴
在
上恒成立
在
上是减函数,
∴当
时,
∴
,
∴所求实数a的取值范围为
20、(本小题满分12分)
由

此时
∴

又
,∴
,∴
∴实数a不存在
21、(本小题满分12分)
(1)若方程表示圆,则
,∴
(2)设M、N的坐标分别为
、
由
,得
又
,∴
,∴
①
由
,得
∴
代入①得
,
∴
(3)设MN为直径的圆的方程为
,
即
又
∴所求圆的方程为
22、(本小题满分14分)
(1)当
时,
设x为其不动点,则
,即
∴
或2,即
的不动点是-1,2
(2)由
得
由题意知,此方程恒有两个相异的实根
∴
对任意的
恒成立
∴
,∴
(3)设
,则直线AB的斜率
,∴
由(2)知AB中点M的坐标为
又∵M在线段AB的垂直平分线
上,∴
∴
(当且仅当
时取等号)
∴实数b的取值范围为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com