查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、选择题(每小题5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空题(每题4分,共16分)

13、          14、        15、1     16、15

三、解答题(共74分)

17、(本小题满分12分)

(1)

函数的最小正周期是

时,即时,函数有最大值1。

(2)由,得

时,取得,函数的单调递减区间是

(3)

18、(本小题满分12分)

(1)由题意知:,∴=1

①,∴当 n≥2时,

①-②得:

>0,∴,(n≥2且

是以=1为首项,d=1为公差的等差数列

=n

(2)

是以为首项,为公比的等比数列

,∴

                        ①

           ②

①-②得

19、(本小题满分12分)

(1)当时,

上是增函数

上是增函数

∴当时,

(2)上恒成立

上恒成立

上恒成立

上是减函数,

∴当时,

∴所求实数a的取值范围为

20、(本小题满分12分)

此时

,∴,∴

∴实数a不存在

21、(本小题满分12分)

(1)若方程表示圆,则,∴

(2)设M、N的坐标分别为

,得

,∴,∴    ①

,得

代入①得

(3)设MN为直径的圆的方程为

∴所求圆的方程为

22、(本小题满分14分)

(1)当时,

设x为其不动点,则,即

或2,即的不动点是-1,2

(2)由

由题意知,此方程恒有两个相异的实根

对任意的恒成立

,∴

(3)设,则直线AB的斜率,∴

由(2)知AB中点M的坐标为

又∵M在线段AB的垂直平分线上,∴

(当且仅当时取等号)

∴实数b的取值范围为

 

 


同步练习册答案