32.有两个实验小组的同学为探究过氧化钠与二氧化硫的反应.都用如下图所示的装置进行实验.通入SO2气体.将带余烬的木条插入试管C中.木条复燃. 请回答下列问题: (1)第1小组同学认为Na2O2与SO2反应生成了Na2SO3和O2.该反应的化学方程式 是: (2)请设计一种实验方案证明Na2O2与SO2反应生成的白色固体中含有Na2SO3. 上述方案是否合理? .请简要说明两点理由: ① ,② . 查看更多

 

题目列表(包括答案和解析)

某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分 成绩不小于100分 合计
甲班 a=
12
12
b=
38
38
50
乙班 c=24 d=26 50
合计 e=
36
36
f=
64
64
100
(Ⅱ)现从乙班50人中任意抽取3人,记ξ表示抽到测试成绩在[100,120)的人数,求ξ的分布列和数学期望Eξ.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.204 6.635 7.879 10.828

查看答案和解析>>

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
(1)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(2)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P≥(k2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.814 5.024

查看答案和解析>>

某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表:
甲班
成绩 [80,90) [90,100) [100,110) [110,120) [120,130)
频数 4 20 15 10 1
乙班
成绩 [80,90) [90,100) [100,110) [110,120) [120,130)
频数 1 11 23 13 2
完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由.
成绩小于100分 成绩不小于100分 合计
甲班 a= 26 50
乙班 12 d= 50
合计 36 64 100
附:
P(K2>k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d).

查看答案和解析>>

某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,
甲班为对比班,甲乙两班的人数均为50人,一年后两班进行测试,成绩如下表(总分:150分);
甲班
成绩 [80,90) [90,100) [100,110) [110,120) [120,130)
频数 4 20 15 10 1
乙班
成绩 [80,90) [90,100) [100,110) [110,120) [120,130)
频数 1 11 23 13 2
(1)现从甲班成绩位于[90,120)内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由.
成绩小于100 成绩不小于100分 合计
甲班 50
乙班 50
合计 36 64 100
附:
p(K2≥k0 0.10 0.05 0.025 0.01 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(1)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分 成绩不小于100分 合计
甲班 a=
12
12
b=
38
38
50
乙班 c=24 d=26 50
合计 e=
36
36
f=
64
64
100
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.204 6.635 7.879 10.828

查看答案和解析>>


同步练习册答案